首页> 外文期刊>EURASIP journal on audio, speech, and music processing >Regularized minimum class variance extreme learning machine for language recognition
【24h】

Regularized minimum class variance extreme learning machine for language recognition

机译:用于语言识别的正则化最小类别方差极限学习机

获取原文

摘要

Support vector machines (SVMs) have played an important role in the state-of-the-art language recognition systems. The recently developed extreme learning machine (ELM) tends to have better scalability and achieve similar or much better generalization performance at much faster learning speed than traditional SVM. Inspired by the excellent feature of ELM, in this paper, we propose a novel method called regularized minimum class variance extreme learning machine (RMCVELM) for language recognition. The RMCVELM aims at minimizing empirical risk, structural risk, and the intra-class variance of the training data in the decision space simultaneously. The proposed method, which is computationally inexpensive compared to SVM, suggests a new classifier for language recognition and is evaluated on the 2009 National Institute of Standards and Technology (NIST) language recognition evaluation (LRE). Experimental results show that the proposed RMCVELM obtains much better performance than SVM. In addition, the RMCVELM can also be applied to the popular i-vector space and get comparable results to the existing scoring methods. Keywords Language recognition Extreme learning machine Single-hidden layer feedforward neural networks Support vector machine
机译:支持向量机(SVM)在最新的语言识别系统中发挥了重要作用。最近开发的极限学习机(ELM)倾向于具有更好的可伸缩性,并且以比传统SVM更快的学习速度实现类似或更好的泛化性能。受到ELM优异功能的启发,本文提出了一种称为正则化最小类方差极限学习机(RMCVELM)的语言识别新方法。 RMCVELM旨在同时最小化决策空间中的经验风险,结构风险和训练数据的类内差异。所提出的方法与SVM相比在计算上便宜,它提出了一种新的语言识别分类器,并在2009年美国国家标准技术研究院(NIST)语言识别评估(LRE)中进行了评估。实验结果表明,提出的RMCVELM比SVM具有更好的性能。此外,RMCVELM还可以应用于流行的i-vector空间,并获得与现有评分方法相当的结果。关键词语言识别极限学习机单层前馈神经网络支持向量机

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号