首页> 外文期刊>African Journal of Mathematics and Computer Science Research >Solving three-dimensional (3D) Laplace equations by successive over-relaxation method
【24h】

Solving three-dimensional (3D) Laplace equations by successive over-relaxation method

机译:用连续过松弛法求解三维(3D)拉普拉斯方程

获取原文

摘要

Motivated by the assertion that all physical systems exist in three space dimensions, and that representation in one or two space dimensions entails a large degree of approximations. The main objective of this paper is to extend the successive over-relaxation (SOR) method which is one of the widely used numerical methods in solving the Laplace equation, the most often encountered of the Elliptic partial differential equations (PDEs) in two dimensions to solving it in three dimensions. This is done by providing an easier procedure to obtain proper estimates to the SOR parameter and the stability criterion which are the two determinant elements used in facilitating convergence to the solution when solving PDEs by the SOR method. The hope is that, with the emergence of this finding, the representation of physical and environmental science problem will be closer to reality by representing them in three dimensions.
机译:由于所有物理系统都存在于三个空间维度中,而在一个或两个空间维度中进行表示需要很大程度的近似。本文的主要目的是将连续超松弛(SOR)方法扩展为求解二维二维椭圆偏微分方程(PDE)中最常遇到的拉普拉斯方程的一种广泛使用的数值方法。从三个方面解决它。通过提供一个更简单的过程来获得对SOR参数和稳定性准则的适当估计,这是在通过SOR方法求解PDE时有助于解决方案收敛的两个决定因素,从而实现了这一点。希望是,随着这一发现的出现,通过在三个维度上对物理和环境科学问题的表示,它们将更接近于现实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号