首页> 外文期刊>Entropy >Multiscale Entropy Analysis of the Differential RR Interval Time Series Signal and Its Application in Detecting Congestive Heart Failure
【24h】

Multiscale Entropy Analysis of the Differential RR Interval Time Series Signal and Its Application in Detecting Congestive Heart Failure

机译:差分RR间隔时间序列信号的多尺度熵分析及其在充血性心力衰竭中的应用

获取原文

摘要

Cardiovascular systems essentially have multiscale control mechanisms. Multiscale entropy (MSE) analysis permits the dynamic characterization of the cardiovascular time series for both short-term and long-term processes, and thus can be more illuminating. The traditional MSE analysis for heart rate variability (HRV) is performed on the original RR interval time series (named as MSE_RR). In this study, we proposed an MSE analysis for the differential RR interval time series signal, named as MSE_dRR. The motivation of using the differential RR interval time series signal is that this signal has a direct link with the inherent non-linear property of electrical rhythm of the heart. The effectiveness of the MSE_RR and MSE_dRR were tested and compared on the long-term MIT-Boston’s Beth Israel Hospital (MIT-BIH) 54 normal sinus rhythm (NSR) and 29 congestive heart failure (CHF) RR interval recordings, aiming to explore which one is better for distinguishing the CHF patients from the NSR subjects. Four RR interval length for analysis were used ( N = 500 , N = 1000 , N = 2000 and N = 5000 ). The results showed that MSE_RR did not report significant differences between the NSR and CHF groups at several scales for each RR segment length type (Scales 7, 8 and 10 for N = 500 , Scales 3 and 10 for N = 1000 , Scales 2 and 3 for both N = 2000 and N = 5000 ). However, the new MSE_dRR gave significant separation for the two groups for all RR segment length types except N = 500 at Scales 9 and 10. The area under curve (AUC) values from the receiver operating characteristic (ROC) curve were used to further quantify the performances. The mean AUC of the new MSE_dRR from Scales 1–10 are 79.5%, 83.1%, 83.5% and 83.1% for N = 500 , N = 1000 , N = 2000 and N = 5000 , respectively, whereas the mean AUC of MSE_RR are only 68.6%, 69.8%, 69.6% and 67.1%, respectively. The five-fold cross validation support vector machine (SVM) classifier reports the classification Accuracy ( A c c ) of MSE_RR as 73.5%, 75.9% and 74.6% for N = 1000 , N = 2000 and N = 5000 , respectively, while for the new MSE_dRR analysis accuracy was 85.5%, 85.6% and 85.6%. Different biosignal editing methods (direct deletion and interpolation) did not change the analytical results. In summary, this study demonstrated that compared with MSE_RR, MSE_dRR reports better statistical stability and better discrimination ability for the NSR and CHF groups.
机译:心血管系统本质上具有多尺度控制机制。多尺度熵(MSE)分析允许对短期和长期过程进行心血管时间序列的动态表征,因此更具启发性。传统的MSE心率变异性(HRV)分析是在原始RR间隔时间序列(称为MSE_RR)上执行的。在这项研究中,我们提出了差分RR间隔时间序列信号的MSE分析,称为MSE_dRR。使用差分RR间隔时间序列信号的动机在于,该信号与心脏电节律的固有非线性特性有着直接的联系。在长期的MIT波士顿贝思以色列医院(MIT-BIH)54正常窦性心律(NSR)和29充血性心力衰竭(CHF)RR间期记录中测试并比较了MSE_RR和MSE_dRR的有效性,旨在探讨哪些一种更好地将CHF患者与NSR受试者区分开。使用四个RR间隔长度进行分析(N = 500,N = 1000,N = 2000和N = 5000)。结果显示,对于每种RR段长度类型,MSE_RR在NSR和CHF组之间没有在多个尺度上报告显着差异(N = 500的尺度7、8和10,N = 1000的尺度3和10,N和1000的尺度2和3。对于N = 2000和N = 5000)。但是,对于所有RR段长度类型,新的MSE_dRR分别为两组提供了显着的分离,比例9和10处的N = 500,但接收器工作特性(ROC)曲线的曲线下面积(AUC)值用于进一步量化表演。对于N = 500,N = 1000,N = 2000和N = 5000,新的MSE_dRR的1-10级平均AUC分别为79.5%,83.1%,83.5%和83.1%,而MSE_RR的平均AUC为分别只有68.6%,69.8%,69.6%和67.1%。五重交叉验证支持向量机(SVM)分类器报告了MSE_RR的分类准确度(A cc)对于N = 1000,N = 2000和N = 5000分别为73.5%,75.9%和74.6%。新的MSE_dRR分析准确性为85.5%,85.6%和85.6%。不同的生物信号编辑方法(直接删除和内插)不会改变分析结果。总之,这项研究表明,与MSE_RR相比,MSE_dRR报告了N​​SR和CHF组更好的统计稳定性和更好的区分能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号