...
首页> 外文期刊>eLife journal >Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system
【24h】

Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system

机译:利用光遗传学技术,可以对可兴奋的心脏系统中的螺旋波动力学进行实时时空控制

获取原文

摘要

From a spinning galaxy to a swarm of honeybees, rotating spirals are widespread in nature. Even within the muscles of the heart, waves of electrical activity sometimes rotate spirally, leading to irregular heart rhythms or arrhythmia – a condition that can be fatal. Irrespective of where they occur, spiral waves organize around a center or core with different biophysical properties compared to the rest of the medium. The properties of the core determine the overall dynamics of the spiral. This means that, theoretically, it should be possibly to completely control a spiral wave just by manipulating its core. Now, Majumder, Feola et al. have tested this long-standing hypothesis using a combination of computer modeling and experiments with single layers of rat heart cells grown in a laboratory. First, the heart cells were genetically modified so that their electrical properties could be altered with light; in other words, the cells were put under optical control. Next, by using of a narrow beam of light, Majumder, Feola et al. precisely controlled the electrical properties of a small number of cells, which then attracted and supported a rotating spiral wave by acting as its new core. Moving the light beam allowed the core of the spiral wave to be shifted too, meaning the spiral wave could now be steered along any desired path in the cell layer. Majumder, Feola et al. hope that these underlying principles may one day provide the basis of new treatments for irregular heartbeats that are more effective and less damaging to the heart than existing options. Yet first, more work is needed to translate these findings from single layers of cells to actual hearts.
机译:从旋转的星系到成群的蜜蜂,自然界中普遍存在旋转螺旋。即使在心脏肌肉内,电活动波有时也会螺旋旋转,导致不规则的心律或心律不齐,这种情况可能是致命的。无论它们发生在何处,螺旋波都围绕着中心或核心组织,与其他介质相比,它们具有不同的生物物理特性。核心的特性决定了螺旋的整体动力学。这意味着,从理论上讲,仅通过操纵其波心就应该完全控制螺旋波。现在,Majumder,Feola等。结合计算机建模和实验对实验室中生长的单层大鼠心脏细胞的测试,已经验证了这一长期存在的假设。首先,对心脏细胞进行了基因改造,以使其光能改变其电特性。换句话说,将细胞置于光学控制下。接下来,通过使用窄光束,Majumder,Feola等人。精确地控制了少量细胞的电特性,然后通过充当其新核心来吸引并支撑旋转的螺旋波。移动光束也可以使螺旋波的核心发生位移,这意味着现在可以沿细胞层中的任何所需路径操纵螺旋波。 Majumder,Feola等。希望这些基本原则有一天可以为不规则心跳的新疗法提供基础,这种新疗法比现有方法更有效且对心脏的损害更少。但是首先,需要更多的工作来将这些发现从单层细胞转化为实际心脏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号