【24h】

Parity helps to compute Majority

机译:奇偶校验有助于计算多数

获取原文
       

摘要

We study the complexity of computing symmetric and threshold functions by constant-depth circuits with Parity gates, also known as AC 0 [ ] circuits. Razborov (1987) and Smolensky (1987, 1993) showed that Majority requires depth- d AC 0 [ ] circuits of size 2 ( n 1 2( d ? 1) ) . By using a divide-and-conquer approach, it is easy to show that Majority can be computed with depth- d AC 0 [ ] circuits of size 2 O ( n 1 ( d ? 1) ) . This gap between upper and lower bounds has stood for nearly three decades.Somewhat surprisingly, we show that neither the upper bound nor the lower bound above is tight for large d . We show for d 5 that any symmetric function can be computed with depth- d AC 0 [ ] circuits of size exp ( O ( n 3 2 1 ( d ? 4) ) ) . Our upper bound extends to threshold functions (with a constant additive loss in the denominator of the double exponent). We improve the Razborov-Smolensky lower bound to show that for d 3 Majority requires depth- d AC 0 [ ] circuits of size 2 ( n 1 (2 d ? 4) ) . For depths d 4 , we are able to refine our techniques to get almost-optimal bounds: the depth- 3 AC 0 [ ] circuit size of Majority is 2 ( n 1 2 ) , while its depth- 4 AC 0 [ ] circuit size is 2 ( n 1 4 ) .
机译:我们研究具有奇偶校验门的恒定深度电路(也称为AC 0 []电路)计算对称和阈值函数的复杂性。 Razborov(1987年)和Smolensky(1987年,1993年)表明,多数需要深度为2的d AC 0 []回路(n 1 2(d?1))。通过采用分而治之的方法,很容易表明,可以使用大小为2 O(n 1(d?1))的深度d AC 0 []电路来计算多数。上限和下限之间的这种差距已经存在了近三十年。令人惊讶的是,我们表明,对于大d来说,上限和下限都不是紧的。对于d 5,我们可以证明,任何对称函数都可以用深度为exp(O(n 3 2 1(d?4)))的深度d AC 0 []电路来计算。我们的上限扩展到阈值函数(在双指数的分母中具有恒定的累加损失)。我们改进了Razborov-Smolensky的下界,以表明对于d 3多数需要深度为d的AC尺寸为2(n 1(2 d?4))的AC 0 []电路。对于深度d 4,我们能够完善技术以得到几乎最佳的边界:深度3 AC 0 []的多数电路大小为2(n 1 2),而深度4 AC 0 []的电路大小是2(n 1 4)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号