首页> 外文期刊>Electronic Colloquium on Computational Complexity >Satisfiability and Derandomization for Small Polynomial Threshold Circuits
【24h】

Satisfiability and Derandomization for Small Polynomial Threshold Circuits

机译:小型多项式阈值电路的可满足性和去随机化

获取原文
           

摘要

A polynomial threshold function (PTF) is defined as the sign of a polynomial p : ool n R . A PTF circuit is a Boolean circuit whose gates are PTFs. We study the problems of exact and (promise) approximate counting for PTF circuits of constant depth.Satisfiability (#SAT). We give the first zero-error randomized algorithm faster than exhaustive search that counts the number of satisfying assignments of a given constant-depth circuit with a super-linear number of wires whose gates are s -sparse PTFs, for s almost quadratic in the input size of the circuit; here a PTF is called s -sparse if its underlying polynomial has at most s monomials. More specifically, we show that, for any large enough constant c , given a depth- d circuit with ( n 2 ? 1 c ) -sparse PTF gates that has at most n 1+ d wires, where d depends only on c and d , the number of satisfying assignments of the circuit can be computed in randomized time 2 n ? n d with zero error. This generalizes the result by Chen, Santhanam and Srinivasan (CCC, 2016) who gave a SAT algorithm for constant-depth circuits of super-linear wire complexity with linear threshold function (LTF) gates only. Quantified derandomization. The quantified derandomization problem, introduced by Goldreich and Wigderson (STOC, 2014), asks to compute the majority value of a given Boolean circuit, under the promise that the minority-value inputs to the circuit are very few. We give a quantified derandomization algorithm for constant-depth PTF circuits with a super-linear number of wires that runs in quasi-polynomial time. More specifically, we show that for any sufficiently large constant c , there is an algorithm that, given a degree- PTF circuit C of depth d with n 1+1 c d wires such that C has at most 2 n 1 ? 1 c minority-value inputs, runs in quasi-polynomial time exp ( log n ) O 2 and determines the majority value of C . (We obtain a similar quantified derandomization result for PTF circuits with n -sparse PTF gates.) This extends the recent result of Tell (STOC, 2018) for constant-depth LTF circuits of super-linear wire complexity. Pseudorandom generators. We show how the classical Nisan-Wigderson (NW) generator (JCSS, 1994) yields a nontrivial pseudorandom generator for PTF circuits (of unrestricted depth) with sub-linearly many gates. As a corollary, we get a PRG for degree- PTFs with the seed length exp log n log 2 (1 ) .
机译:多项式阈值函数(PTF)定义为多项式p: bool n R的符号。 PTF电路是布尔电路,其门为PTF。我们研究了恒定深度PTF电路的精确和(无用)近似计数问题。可满足性(#SAT)。与穷举搜索相比,我们提供了第一种零误差随机算法,该算法比穷举搜索要快得多,穷举搜索计算给定恒定深度电路的满意分配数量,该电路的门极数为s-稀疏PTF,输入的s几乎是平方的电路尺寸;如果PTF的基础多项式最多具有s个单项式,则此处将其称为s-稀疏。更具体地说,我们表明,对于任何足够大的常数c,给定一个深度(d 2-1 c)-稀疏PTF门的d电路最多具有n 1+ d条导线,其中d仅取决于c和d ,可以在随机时间2 n?中计算电路的满意分配数量。 n d误差为零。这概括了Chen,Santhanam和Srinivasan(CCC,2016)的结果,他们给出了仅具有线性阈值功能(LTF)门的超线性导线复杂度恒定深度电路的SAT算法。量化的非随机化。 Goldreich和Wigderson(STOC,2014)提出的量化非随机化问题要求计算给定布尔电路的多数值,但前提是该电路的少数值输入很少。我们给出了一种恒定深度的PTF电路的量化去随机化算法,该电路具有在准多项式时间内运行的超线性导线。更具体地,我们表明对于任何足够大的常数c,存在一种算法,给定深度为d的度PTF电路C的n 1 + 1 c d根导线,使得C最多具有2 n 1? 1 c少数值输入,在准多项式时间exp(log n)O 2中运行,并确定C的多数值。 (对于具有n个稀疏PTF门的PTF电路,我们获得了类似的量化去随机化结果。)这扩展了Tell(STOC,2018)的最新结果,该结果用于超深度导线复杂性的恒定深度LTF电路。伪随机数生成器。我们展示了经典的Nisan-Wigderson(NW)生成器(JCSS,1994)如何为具有亚线性许多门的PTF电路(深度不受限制)产生非平凡的伪随机生成器。作为推论,我们获得度为PTF的PRG,其种子长度为exp log n log 2(1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号