首页> 外文期刊>Computational complexity >IMPROVED BOUNDS FOR QUANTIFIED DERANDOMIZATION OF CONSTANT-DEPTH CIRCUITS AND POLYNOMIALS
【24h】

IMPROVED BOUNDS FOR QUANTIFIED DERANDOMIZATION OF CONSTANT-DEPTH CIRCUITS AND POLYNOMIALS

机译:用于恒定深度电路和多项式的量化去甲化的改进边界

获取原文
           

摘要

This work studies the question of quantified derandomization, which was introduced by Goldreich and Wigderson (STOC 2014). The generic quantified derandomization problem is the following: For a circuit class C and a parameter B=B(n), given a circuit CC with n input bits, decide whether C rejects all of its inputs, or accepts all but B(n) of its inputs. In the current work, we consider three settings for this question. In each setting, we bring closer the parameter setting for which we can unconditionally construct relatively fast quantified derandomization algorithms, and the threshold values (for the parameters) for which any quantified derandomization algorithm implies a similar algorithm for standard derandomization. For constant-depth circuits, we construct an algorithm for quantified derandomization that works for a parameter B(n) that is only slightly smaller than a threshold parameter and is significantly faster than the best currently known algorithms for standard derandomization. On the way to this result, we establish a new derandomization of the switching lemma, which significantly improves on previous results when the width of the formula is small. For constant-depth circuits with parity gates, we lower a threshold of Goldreich and Wigderson from depth five to depth four and construct algorithms for quantified derandomization of a remaining type of layered depth-3 circuit that they left as an open problem. We also consider the question of constructing hitting-set generators for multivariate polynomials over large fields that vanish rarely and prove two lower bounds on the seed length of such generators. Several of our proofs rely on an interesting technique, which we call the randomized tests technique. Intuitively, a standard technique to deterministically find a good object is to construct a simple deterministic test that decides the set of good objects, and then fool that test using a pseudorandom generator. We show that a similar approach works also if the simple deterministic test is replaced with a distribution over simple tests, and demonstrate the benefits in using a distribution instead of a single test.
机译:这项工作研究了由Goldreich和Wigderson提出的量化非随机化问题(STOC 2014)。通用的量化去随机化问题如下:对于电路类C和参数B = B(n),给定具有n个输入位的电路CC,确定C是否拒绝其所有输入,或接受除B(n)以外的所有输入。其输入。在当前的工作中,我们考虑此问题的三种设置。在每种设置中,我们将更紧密地设置参数设置,以便可以无条件构造相对快速的量化去随机化算法,而阈值(用于参数)则是任何量化去随机化算法都暗示着类似的标准去随机化算法。对于恒定深度电路,我们构造了一种用于量化去随机化的算法,该算法可对参数B(n)起作用,该参数B(n)仅略小于阈值参数,并且比目前已知的最佳标准去随机化算法快得多。在获得此结果的过程中,我们建立了切换引理的新非随机化方法,当公式的宽度较小时,它将大大改善以前的结果。对于具有奇偶校验门的恒定深度电路,我们将Goldreich和Wigderson的阈值从深度5降低到深度4,并构造算法以量化剩余的剩余类型的深度3电路的开放式量化。我们也考虑在很少消失的大域上为多元多项式构造命中集生成器的问题,并证明了此类生成器的种子长度有两个下限。我们的一些证明依赖于一种有趣的技术,我们称之为随机测试技术。直观上,确定性地找到一个好的对象的一种标准技术是构造一个简单的确定性测试,该测试确定好的对象的集合,然后使用伪随机数生成器来欺骗该测试。我们证明,如果将简单确定性测试替换为简单测试中的分布,则类似的方法也有效,并证明了使用分布而不是单个测试的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号