首页> 外文期刊>Electronic Colloquium on Computational Complexity >Addition is exponentially harder than counting for shallow monotone circuits
【24h】

Addition is exponentially harder than counting for shallow monotone circuits

机译:加法比浅单调电路的计数困难

获取原文
           

摘要

Let U k N denote the Boolean function which takes as input k strings of N bits each, representing k numbers a (1) a ( k ) in 0 1 2 N ? 1 , and outputs 1 if and only if a (1) + + a ( k ) 2 N Let THR t n denote a monotone unweighted threshold gate, i.e., the Boolean function which takes as input a single string x 0 1 n and outputs 1 if and only if x 1 + + x n t . The function U k N may be viewed as a monotone function that performs addition, and THR t n may be viewed as a monotone function that performs counting. We refer to circuits that are composed of THR gates as monotone majority circuits.The main result of this paper is an exponential lower bound on the size of bounded-depth monotone majority circuits that compute U k N . More precisely, we show that for any constant d 2 , any depth- d monotone majority circuit computing U d N must have size 2 ( N 1 d ) . Since U k N can be computed by a single monotone weighted threshold gate (that uses exponentially large weights), our lower bound implies that constant-depth monotone majority circuits require exponential size to simulate monotone weighted threshold gates. This answers a question posed by Goldmann and Karpinski (STOC'93) and recently restated by Hastad (2010, 2014). We also show that our lower bound is essentially best possible, by constructing a depth- d , size- 2 O ( N 1 d ) monotone majority circuit for U d N .As a corollary of our lower bound, we significantly strengthen a classical theorem in circuit complexity due to Ajtai and Gurevich (JACM'87). They exhibited a monotone function that is in AC 0 but requires super-polynomial size for any constant-depth monotone circuit composed of unbounded fan-in AND and OR gates. We describe a monotone function that is in depth- 3 AC 0 but requires exponential size monotone circuits of any constant depth, even if the circuits are composed of THR gates.
机译:令U k N表示布尔函数,该布尔函数以k个N位的字符串作为输入,在0 1 2 N?中表示k个数字a(1)a(k)。 1,并且仅当a(1)+ + a(k)2 N时才输出1。让THR tn表示单调非加权阈值门,即布尔函数,其将单个字符串x 0 1 n作为输入并输出1当且仅当x 1 + + xnt。函数U k N可被视为执行加法的单调函数,而THR t n可被视为执行计数的单调函数。我们将由THR门组成的电路称为单调多数电路。本文的主要结果是计算U k N的有界深度单调多数电路的大小的指数下界。更精确地,我们表明,对于任何常数d 2,任何深度d单调多数电路计算U d N必须具有大小2(N 1 d)。由于U k N可以通过单个单调加权阈值门(使用指数大的权重)来计算,因此我们的下限意味着恒定深度的单调多数电路需要指数大小来模拟单调加权阈值门。这回答了戈德曼和卡尔平斯基(STOC'93)提出的问题,最近由哈斯塔德(Hastad)(2010,2014)重新提出。我们还表明,通过为U d N构造一个d,size- 2 O(N 1 d)个单调多数电路,我们的下界基本上是最好的。作为我们下界的推论,我们大大加强了一个经典定理由于Ajtai和Gurevich(JACM'87)导致电路复杂性下降。它们表现出AC 0中的单调功能,但是对于由无界扇入AND和OR门组成的任何恒定深度单调电路,都需要超多项式大小。我们描述了一个深度为3 AC 0的单调函数,但是它需要任何恒定深度的指数大小的单调电路,即使该电路由THR门组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号