首页> 外文期刊>ISIJ international >Simultaneous Three-dimensional Analysis of Gas–Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
【24h】

Simultaneous Three-dimensional Analysis of Gas–Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics

机译:离散元法与计算流体力学相结合的高炉煤气固流同时三维分析

获取原文
       

摘要

Low reducing agent operation of the blast furnace is an essential method for mitigating CO_(2) emissions in ironmaking. Because the coke rate is reduced in low reducing agent operation, gas permeability tends to deteriorate. Recently, blast furnaces with inner volume larger than 5000 m~(3) have become usual not only in Japan, but also in other Asian nations. Under these conditions, detailed information on in-furnace phenomena is required to attain stable operation.In the present study, a combination model using the discrete element method and computational fluid dynamics (DEM-CFD) was introduced to understand the fully three-dimensional in-furnace phenomena in the whole blast furnace. Due to the limitations of computational resources, the number of DEM particles must be reduced when applying DEM to the whole blast furnace. On the other hand, small cells must be used in the continuum model in order to calculate the gas flow in detail. Thus, mutual conversion between the location of particles in DEM and the property of the cells in the continuum model is needed. In this study, a method of converting information on the locations of cluster-approximated particles treated in DEM to continuum cells was proposed. Furthermore, optimization in which cells could be obtained without conversion parameters was performed to avoid losing local information obtained by DEM calculations. Simulations of solid movement and gas flow were successfully carried out with this coupled DEM-CFD model. As a result, it became possible to understand the three-dimensional stress field among particles under gas flow, transient gas flow and pressure distribution caused by charging of the burden materials, as well as solid motion.
机译:高炉的低还原剂操作是减轻炼铁过程中CO_(2)排放的必要方法。因为在低还原剂操作中焦炭速率降低,所以气体渗透性趋于劣化。最近,内部容积大于5000 m〜(3)的高炉不仅在日本而且在其他亚洲国家也很常见。在这种情况下,需要获得有关炉内现象的详细信息以实现稳定运行。在本研究中,引入了使用离散元方法和计算流体动力学(DEM-CFD)的组合模型来了解炉膛的全三维-整个高炉的炉膛现象。由于计算资源的限制,当将DEM应用于整个高炉时,必须减少DEM粒子的数量。另一方面,在连续模型中必须使用小单元,以便详细计算气体流量。因此,需要在DEM中的粒子位置与连续模型中的单元格属性之间相互转换。在这项研究中,提出了一种方法,将在DEM中处理的簇近似粒子的位置信息转换为连续细胞。此外,执行了不使用转换参数即可获取单元的优化操作,以避免丢失通过DEM计算获得的局部信息。用这种耦合的DEM-CFD模型成功地进行了固体运动和气体流动的模拟。结果,有可能了解气流下的颗粒之间的三维应力场,瞬时气流和由填充物料的装填以及固体运动引起的压力分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号