首页> 外文期刊>Internet Journal of Orthopedic Surgery >Subtrochanteric Fractures- Current Management Options
【24h】

Subtrochanteric Fractures- Current Management Options

机译:股骨粗隆下骨折-目前的治疗选择

获取原文
       

摘要

Introduction The Subtrochanteric fractures account for 10-34% of all hip fractures (David G Lavelle 2003).These fractures have long been recognized as the most difficult of femoral fractures in terms of treatment (Delong William G. 2001). These are the fractures between lesser trochanter and 5cm distally. They may occur as singly but sometimes extension of intertrochanteric fractures. Prior to twentieth century these fractures were less common but more complicating to the patient. As the treatment options were few therefore, the situation used to be life threatening (Delong William G. 2001).The treatment of these fractures continues to present a challenge to an Orthopaedic surgeon. This challenge stems from a combination of anatomical and biomechanical features pertinent to this area. (Fielding. clinic orthop 192;86,1973.,Heiple. JBJS 61A; 730, 1979)Anatomical features The subtrochanteric region has been defined in various ways, but most commonly the area between the inferior border of the lesser trochanter and the isthmus of the femoral shaft or the inferior border of the lesser trochanter to the junction of proximal and middle one third of the femur is taken as subtrochanteric region (Stephen H. Sims 2002). The area is mainly cortical due to which the area of healing as well as the vascularity are less. This prolongs the healing time. Moreover the Proximal fragment is short and medullary canal wide leading to less than optimal fixation. The attachment of muscles across the fracture is such that the proximal fragment is flexed, abducted and externally rotated and the distal fragment adducted causing a shear at the fracture site so closed reduction and holding is not possible in these fractures. In the late teens and early adult life the proximal femoral metaphysis and the femoral neck are filled with dense cancellous bone. Because this cancellous bone becomes increasingly sparse with advancing age, contact and purchase for any intramedullary nail type of fixation are poor. The trabecular structure of the femoral head also thins, this result in a relative void of the trabeculae deep to the subchondral bone. Only the centre of the femoral head where the tension and compression trabecular systems cross contains a relatively dense trabecular network that can give adequate purchase for any fixation device.Biomechanical featuresBecause of its shape the femur is subjected to eccentric loading The proximal end of the femur has been likened to a cantilevered arch that transfers the force of weight bearing to the hip and pelvis. In vivo this bending force loads the medial cortex in compression and lateral cortex in tension, the forces are not in equilibrium. There are high stresses acting in Subtrochanteric area, up to 1200lb/sq inch. There is high compressive stress on the medial side and high tensile stress on the lateral side (Kock am J orthop. 21; 177-193, 1917). Although lateral muscles partly compensate for the high compressive medial forces, proximal femur is still eccentrically loaded as the compressive medial forces are considerably greater than the lateral tensile forces (Rybicki etal J. Biomech. 5; 2003,1972 ). Major compressive stresses in the femur are greatest in the medial cortex 1-3 inches below lesser trochanter. If the medial buttress is not intact or can not be re-established, the internal fixation devices are subjected mainly to bending stresses and the loads are concentrated in this high stress area resulting in implant failure or loss of fixation. This is the most highly stressed region in the body. This dissimilar loading pattern is of great importance in selecting internal fixation devices and in understanding the causes and prevention of failure of internal fixation devices. The loading pattern further emphasizes the importance of integrity of medial half of the column as well as the importance of prestressing of the implant in tension. This in turn increases axial compression, which increases the stability of
机译:引言转子下骨折占所有髋部骨折的10-34%(David G Lavelle 2003),就治疗而言,这些骨折长期以来被认为是最困难的股骨骨折(Delong William G.2001)。这些是小转子与远端5厘米之间的骨折。它们可能单独发生,但有时会发生转子间骨折的扩展。在20世纪之前,这些骨折较不常见,但对患者却更为复杂。由于治疗选择很少,因此这种情况曾经危及生命(Delong William G. 2001)。这些骨折的治疗继续给骨科医生带来了挑战。这一挑战源于与该领域相关的解剖学和生物力学特征的结合。 (Fielding。clinic orthop 192; 86,1973。,Heiple。JBJS 61A; 730,1979)解剖特征转子下区域的定义多种多样,但最常见的是小转子下边界与下颌骨峡部之间的区域。股骨干或小转子的下边界到股骨近端和中部交界处的三分之一被视为转子下区域(Stephen H. Sims 2002)。该区域主要是皮质,因此愈合面积和血管性都较小。这延长了愈合时间。此外,近端片段短而髓管宽,导致固定效果不佳。跨骨折处的肌肉附着使得近端骨折片弯曲,外展并向外旋转,而远端骨折片被内收引起骨折部位的剪切,因此在这些骨折中不可能闭合复位并保持。在青少年时期和成年早期,股骨近端干meta端和股骨颈充满了松散的密质骨。由于随着年龄的增长,这种松质骨越来越稀疏,任何髓内钉类型固定的接触和购买都很困难。股骨头的小梁结构也变薄,这导致小梁的相对空隙深入到软骨下骨。仅股骨小梁的中心与拉伸和压缩的小梁系统交叉,其相对密集的小梁网络可以为任何固定装置提供足够的购买。生物力学特征由于股骨的形状受到偏心负荷,股骨的近端具有被比作悬臂拱,将承重力传递到臀部和骨盆。在体内,这种弯曲力使内侧皮层处于压缩状态,外侧皮层处于拉伸状态,这些力不是平衡的。转子下区域承受的最大应力高达1200lb / sq英寸。内侧有高压缩应力,而外侧有高拉伸应力(Kock am J orthop。21; 177-193,1917年)。尽管外侧肌肉部分地补偿了高的压缩内侧力,但是由于压缩内侧力明显大于外侧拉伸力,股骨近端仍然偏心加载(Rybicki等人,J.Biomech.5; 2003,1972)。股骨中的主要压应力在小转子下方的1-3英寸处最大。如果内侧支撑不完整或无法重建,则内部固定装置将主要承受弯曲应力,并且载荷会集中在该高应力区域,从而导致植入物失效或固定丢失。这是体内压力最大的区域。这种不同的加载模式在选择内部固定装置以及理解内部固定装置的原因和防止故障方面非常重要。加载模式进一步强调了柱内侧一半的完整性的重要性以及在张力下对植入物进行预应力的重要性。这反过来又增加了轴向压缩,从而增加了稳定性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号