...
首页> 外文期刊>International Journal of Photoenergy >Synthesis and Application of New Ruthenium Complexes Containingβ-Diketonato Ligands as Sensitizers for Nanocrystalline TiO2Solar Cells
【24h】

Synthesis and Application of New Ruthenium Complexes Containingβ-Diketonato Ligands as Sensitizers for Nanocrystalline TiO2Solar Cells

机译:含β-二酮基配体的新型钌配合物作为纳米晶TiO2太阳能电池敏化剂的合成及应用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Five heteroleptic ruthenium complexes having differentβ-diketonato ligands, [Ru(tctpy)(dppd)(NCS)] (1), [Ru(tctpy)(pd)(NCS)] (2), [Ru(tctpy)(tdd)(NCS)] (3), [Ru(tctpy)(mepd)(NCS)] (4), and [Ru(tctpy)(tmhd)(NCS)] (5), where tctpy = 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine, pd = pentane-2,4-dione, mepd = 3-methylpentane-2,4-dione, tmhd = 2,2,6,6-tetramethylheptane-3,5-dione, tdd = tridecane-6,8-dione, and dppd = 1,3-diphenylpropane-1,3-dione, were synthesized and characterized. These heteroleptic complexes exhibit a broad metal-to-ligand charge transfer absorption band over the whole visible range extending up to 950 nm. The low-energy absorption bands and theE (Ru3+/2+) oxidation potentials in these complexes could be tuned to about 15 nm and 110 mV, respectively, by choosing appropriateβ-diketonate ligands. Molecular orbital calculation of complex1shows that the HOMO is localized on the NCS ligand and the LUMO is localized on the tctpy ligand, which is anchored to the TiO2nanoparticles. Theβ-diketonato-ruthenium(II)-polypyridyl sensitizers, when anchored to nanocrystalline TiO2films for light to electrical energy conversion in regenerative photoelectrochemical cells, achieve efficient sensitization to TiO2electrodes with increasing activity in the order5<4<3≈2<1. Under standard AM 1.5 sunlight, the complex1yielded a short-circuit photocurrent density of 16.7 mA/cm2, an open-circuit voltage of 0.58 V, and a fill factor of 0.64, corresponding to an overall conversion efficiency of 6.2%. A systematic tuning of HOMO energy level shows that an efficient sensitizer should possess a ground-state redox potential value of >+.53 V versus SCE.
机译:具有不同β-二酮基配体的五种杂配钌络合物,[Ru(tctpy)(dppd)(NCS)](1),[Ru(tctpy)(pd)(NCS)](2),[Ru(tctpy)(tdd) (NCS)](3),[Ru(tctpy)(mepd)(NCS)](4)和[Ru(tctpy)(tmhd)(NCS)](5),其中tctpy = 4,4′,4 ′′-三羧基-2,2′:6′,2′′-吡啶,pd =戊烷-2,4-二酮,mepd = 3-甲基戊烷-2,4-二酮,tmhd = 2,2,6,6合成并表征了-四甲基庚烷-3,5-二酮,tdd =十三烷-6,8-二酮,和dppd = 1,3-二苯丙烷-1,3-二酮。这些杂合配合物在整个可见光范围内延伸至950 nm,具有很宽的金属-配体电荷转移吸收带。通过选择合适的β-二酮酸酯配体,可以将这些配合物中的低能吸收带和E(Ru3 + / 2 +)氧化电位分别调节至约15 nm和110 mV。 complex1的分子轨道计算表明,HOMO位于NCS配体上,而LUMO位于tctpy配体上,后者固定在TiO2纳米颗粒上。当将β-二酮钌(II)-聚吡啶基敏化剂固定到再生光电化学电池中的纳米晶体TiO2薄膜上以实现光能到电能的转换时,其对TiO2电极的有效增感以5 <4 <3≈2<1的顺序增加。在标准的AM 1.5阳光下,该配合物产生的短路光电流密度为16.7 mA / cm2,开路电压为0.58 V,填充系数为0.64,对应的总转换效率为6.2%。对HOMO能级的系统调节表明,相对于SCE,高效的敏化剂应具有> +。53 V的基态氧化还原电势值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号