首页> 外文期刊>International Journal of Health, Animal Science and Food Safety >Proteomics of adipose tissue: from the molecular drivers of adipogenesis to the molecular phenotyping of ruminants
【24h】

Proteomics of adipose tissue: from the molecular drivers of adipogenesis to the molecular phenotyping of ruminants

机译:脂肪组织蛋白质组学:从脂肪形成的分子驱动器到反刍动物的分子表型

获取原文
获取外文期刊封面目录资料

摘要

In ruminants, changes in the amount and metabolism of foetal brown and post-natal white adipose tissues (AT) contribute to adaptations or productive traits both at birth for neonate survival (especially in sheep), and in adult life for productive efficiency during the gestation-lactation cycle of dairy females or for carcass yield and quality of meat animals (Bonnet et al., 2010). The molecular pathways accompanying the growth (Louveau et al ., 2016) and metabolic adaptations (Sauerwein et al., 2014) of AT are complex and incompletely understood. Indeed, they strongly depend on animal peculiarities (age, breed, sex), environmental factors (nutrition...) and they are dynamic (transition from foetal to post-natal age or from late pregnancy to lactation). The use of -omics methods, such as proteomics has begun to fill the gap of knowledge of the multifaceted regulations of AT growth and metabolism by providing numerous information on pathways and functions. Two examples illustrate the usefulness of proteomic approaches for ruminant issues by allowing knowledge acquisition and molecular phenotyping. In the first example, proteomics and measurements of chemical composition, cellularity, histology, enzyme activities, and gene expression were applied to fetal AT at 110, 180, 210 and 260 days post conception (dpc) in Blond d’Aquitaine and Charolais breeds. From 180 dpc in the two breeds, we identified (Taga et al., 2012) proteins declared to be hallmarks of brown and white adipocytes in mice, that were underscored by the histological characterization of a mix of multilocular and unilocular cells, putatively brown and white adipocytes, respectively. These cellular and molecular features challenged the concepts on the largely brown nature of bovine foetal AT (based on histological and metabolic features previously reported a few days before or after birth for perirenal AT), and strongly suggested that fetal bovine AT have much more in common with white than with brown AT. The second example is an application of proteomics for biomarkers discovery of ruminant productive traits (Fig. 1). For several years, proteomics has been used to identify adipose proteins differentially abundant between two groups of bovine differing mainly by their muscular or body adiposity or by their energy balance. We merged available proteomics data to provide a list of candidate biomarkers (first step in the process of biomarker discovery) of muscular adiposity that we declared robust candidates because they were identified in at least two publications differing by the breed, the age and the nutrition of bovine (Ceciliani et al. , 2018, Bonnet et al ., unpublished). Very recently, targeted proteomics has become an approach of choice to validate and precisely/absolutely quantify protein biomarkers. We have evaluated and benchmarked three targeted methods (the selected reaction monitoring (SRM), parallel reaction monitoring (PRM) and sequential windowed acquisition of all theoretical spectral (SWATH-MS)) to precisely quantify adiposity biomarkers in muscle tissues of 64 cows (Bons et al. , 2018). The work in progress, is to use these absolute quantifications to bench test the quantification provided by much more rapide and cheaply methods for the the development of a final tool for bovine phenotyping. Finally, public and available -omics data are very valuable for research purposes, since they can be aggregated and repurposed to provide insights in a context that may be entirely different from the original study. We have recently integrated and mined -omics data to computationally predict the large-scale “secretome” of adipose tissues and muscles in ruminants (Bonnet et al. , 2016). The knowledge gained from -omics studies in ruminant species will foster knowledge and minimize unnecessary redundancy in research efforts.
机译:在反刍动物中,胎儿棕色和产后白色脂肪组织(AT)的数量和代谢的变化有助于出生时的适应或生产性状(特别是在绵羊中)以及成年期在妊娠期间的生产效率-母乳哺乳周期或or体产量和肉类动物的质量(Bonnet等,2010)。 AT的生长(Louveau等,2016)和新陈代谢适应(Sauerwein等,2014)伴随的分子途径是复杂且不完全了解的。实际上,它们在很大程度上取决于动物的特性(年龄,品种,性别),环境因素(营养...),并且它们是动态的(从胎儿到出生后或从怀孕后期到哺乳期的转变)。通过提供有关途径和功能的大量信息,诸如蛋白质组学之类的组学方法已经开始填补有关AT生长和代谢多方面调控的知识空白。两个例子说明了蛋白质组学方法通过允许知识获取和分子表型分析对反刍动物问题的有用性。在第一个示例中,蛋白质组学以及化学成分,细胞结构,组织学,酶活性和基因表达的测定在金丹阿基坦和夏洛来牛品种的受孕后110、180、210和260天应用于胎儿AT。从这两个品种的180 dpc中,我们鉴定出(Taga et al。,2012)蛋白质,这些蛋白质被宣布是小鼠棕色和白色脂肪细胞的标志,这些蛋白质的特征是多细胞和单眼细胞混合物的组织学特征(假定是棕色和白色)。白色脂肪细胞。这些细胞和分子特征挑战了关于牛胎儿AT基本上呈褐色性质的概念(基于先前在出生前或出生后几天针对肾周AT报道的组织学和代谢特征),并强烈建议胎牛AT有更多的共同点白色而不是棕色AT。第二个例子是蛋白质组学在反刍动物生产性状生物标志物发现中的应用(图1)。几年来,蛋白质组学已被用于鉴定两组牛之间差异丰富的脂肪蛋白质,这两组蛋白质的主要区别在于其肌肉或身体的脂肪状况或能量平衡。我们合并了可用的蛋白质组学数据,以提供肌肉肥胖的候选生物标志物列表(生物标志物发现过程中的第一步),我们宣布其为健壮的候选物,因为至少在两个出版物中发现了它们,这些出版物因品种,年龄和营养不同而有所差异牛(Ceciliani等人,2018,Bonnet等人,未出版)。最近,靶向蛋白质组学已成为验证和精确/绝对定量蛋白质生物标志物的一种选择方法。我们已经评估并确定了三种靶向方法的基准(选定的反应监测(SRM),平行反应监测(PRM)和顺序窗口采集的所有理论光谱(SWATH-MS)),以精确定量64头母牛(Bons)肌肉组织中的肥胖生物标志物等,2018)。正在进行的工作是使用这些绝对定量方法对由更快速,更便宜的方法提供的定量方法进行基准测试,以开发最终的牛表型鉴定工具。最后,公开和可用的组学数据对于研究目的非常有价值,因为它们可以被汇总并重新用于在可能与原始研究完全不同的情况下提供见解。我们最近已经整合并挖掘了组学数据,以计算预测反刍动物中脂肪组织和肌肉的大规模“秘密组”(Bonnet等人,2016)。从反刍动物物种组学研究中获得的知识将促进知识的积累,并最大程度地减少研究工作中不必要的重复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号