首页> 外文期刊>International Journal of Combinatorial Optimization Problems and Informatics >Enhanced Walksat with Finite Learning Automata For MAX-SAT
【24h】

Enhanced Walksat with Finite Learning Automata For MAX-SAT

机译:增强的Walksat,具有针对MAX-SAT的有限学习自动机

获取原文

摘要

Researchers in artificial intelligence usually adopt the constraint satisfaction problem and the Satisfiability paradigms as their preferred methods when solving various real worlds decision making problems. Local search algorithms used to tackle different optimization problems that arise in various fields aim at finding a tactical interplay between diversification and intensification to overcome local optimality while the time consumption should remain acceptable. The Walksat algorithm for the Maximum Satisfiability Problem (MAX-SAT) is considered to be the main skeleton underlying almost all local search algorithms for MAX-SAT. This paper introduces an enhanced variant of Walksat using Finite Learning Automata. A benchmark composed of industrial and random instances is used to compare the effectiveness of the proposed algorithm against state-of-the-art algorithms.
机译:人工智能研究人员在解决各种现实世界的决策问题时,通常将约束满足问题和可满足性范式作为首选方法。用于解决在各个领域中出现的不同优化问题的本地搜索算法旨在寻找多样化和集约化之间的战术相互作用,以克服局部最优性,同时时间消耗应保持可接受的水平。最大可满足性问题(MAX-SAT)的Walksat算法被认为是几乎所有MAX-SAT本地搜索算法的主要框架。本文介绍了使用有限学习自动机的Walksat增强版本。使用由行业实例和随机实例组成的基准来比较所提出算法与最新算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号