首页> 外文期刊>Atmosphere >Land Use Regression Modeling of PM 2.5 Concentrations at Optimized Spatial Scales
【24h】

Land Use Regression Modeling of PM 2.5 Concentrations at Optimized Spatial Scales

机译:优化空间尺度下PM 2.5浓度的土地利用回归模型

获取原文

摘要

Though land use regression (LUR) models have been widely utilized to simulate air pollution distribution, unclear spatial scale effects of contributing characteristic variables usually make results study-specific. In this study, LUR models for PM 2.5 in Houston Metropolitan Area, US were developed under scales of 100 m, 300 m, 500 m, 800 m, and 1000–5000 m with intervals of 500 m by employing the idea of statistically optimized analysis. Results show that the annual average PM 2.5 concentration in Houston was significantly influenced by area ratios of open space urban and medium intensity urban at a 100 m scale, as well as of high intensity urban at a 500 m scale, whose correlation coefficients valued ?0.64, 0.72, and 0.56, respectively. The fitting degree of LUR model at the optimized spatial scale (adj. R 2 = 0.78) is obviously better than those at any other unified spatial scales (adj. R 2 ranging from 0.19 to 0.65). Differences of PM 2.5 concentrations produced by LUR models with best-, moderate-, weakest fitting degree, as well as ordinary kriging were evident, while the LUR model achieved the best cross-validation accuracy at the optimized spatial scale. Results suggested that statistical based optimized spatial scales of characteristic variables might possibly ensure the performance of LUR models in mapping PM 2.5 distribution.
机译:尽管土地利用回归(LUR)模型已被广泛用于模拟空气污染的分布,但贡献特征变量的空间尺度影响不清楚,通常会使研究结果具有针对性。在这项研究中,美国休斯敦都会区PM 2.5的LUR模型是采用统计优化分析的思想在100 m,300 m,500 m,800 m和1000–5000 m的范围(间隔为500 m)下开发的。结果表明,休斯顿的年平均PM 2.5浓度受100 m规模的露天城市和中等强度城市以及500 m规模的高强度城市的面积比的显着影响,其相关系数值为?0.64 ,分别为0.72和0.56。 LUR模型在优化空间尺度(调整的R 2 = 0.78)下的拟合度明显好于任何其他统一空间尺度(调整的R 2从0.19到0.65)的拟合度。由LUR模型产生的最佳,中度,最弱拟合度以及普通克里金法产生的PM 2.5浓度差异是明显的,而LUR模型在优化的空间尺度上获得了最佳的交叉验证精度。结果表明,基于统计的特征变量优化空间比例可能可以确保LUR模型在绘制PM 2.5分布时的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号