首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Multi-model impacts of climate change on pollution transport from global emission source regions
【24h】

Multi-model impacts of climate change on pollution transport from global emission source regions

机译:气候变化对全球排放源地区的污染物迁移的多模式影响

获取原文
           

摘要

pstrongAbstract./strong The impacts of climate change on tropospheric transport, diagnosed from a??carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistrya??climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP??8.5. All simulations reveal a??strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A??consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a??weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a??rise in tropopause height enabling lofting to higher altitudes, although a??poleward shift in the mid-latitude jets may also play a??minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind./p.
机译:> >摘要。该气候变化是通过对四种化学成分的综合评估而得出的,这些变化是根据全球CO来源的一氧化碳(CO)类示踪物诊断出的,对流层运输的影响。气候模型(CCM)为大气化学和气候模型比对项目(ACCMIP)做出了贡献。在“代表浓度路径”(RCP)气候情景RCP≥8.5的情况下,对当今和21世纪末的条件进行了时间切片模型模拟。所有的模拟都显示出运输的强烈季节性,特别是在热带地区。最高的CO-示踪剂混合比发生在北方冬季,这时强烈的垂直运输与燃烧生物质的排放源区域共存。在整个对流层中,特别是在热带地区,未来CO-示踪剂混合比持续一致而强劲地下降,在冬季和夏季,在四个CCM中都发现了对流层顶周围的增加。热带对流层中CO-示踪剂混合比的降低与该区域对流质量通量的减少有关,这反过来可能反映了未来气候中哈德利细胞循环的减弱。在对流层顶附近,CO-示踪剂混合比的增加主要归因于对流层顶高度的升高,使得能够俯仰到更高的高度,尽管中纬度射流的极向漂移也可能在温带区起着较小的作用。对流层上层。在赤道附近,以赤道和中非为中心,从地表到对流层中部,CO-示踪剂混合比也增加了。这很可能与热带气旋收敛带(ITCZ)附近对流的局部降低有关,从而导致在生物质燃烧区域内较大的CO示踪剂混合比和顺风向较小的混合比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号