首页> 外文期刊>Atmospheric chemistry and physics >Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model
【24h】

Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model

机译:青藏高原黑碳引起的雪反照率减少:基于更新的SNICAR模型的雪粒形状和气溶胶-雪混合状态的不确定性

获取原文

摘要

We implement a set of new parameterizations into the widely used Snow, Ice, and Aerosol Radiative?(SNICAR) model to account for effects of snow grain shape (spherical vs. nonspherical) and black carbon?(BC)–snow mixing state (external vs. internal). We find that nonspherical snow grains lead to higher pure albedo but weaker BC-induced albedo reductions relative to spherical snow grains, while BC–snow internal mixing significantly enhances albedo reductions relative to external mixing. The combination of snow nonsphericity and internal mixing suggests an important interactive effect on BC-induced albedo reduction. Comparisons with observations of clean and BC-contaminated snow albedo show that model simulations accounting for both snow nonsphericity and BC–snow internal mixing perform better than those using the common assumption of spherical snow grains and external mixing. We further apply the updated SNICAR model with comprehensive in situ measurements of BC concentrations in the Tibetan Plateau snowpack to quantify the present-day (2000–2015) BC-induced snow albedo effects from a regional and seasonal perspective. The BC concentrations show distinct and substantial sub-regional and seasonal variations, with higher values in the non-monsoon season and low altitudes. As a result, the BC-induced regional mean snow albedo reductions and surface radiative effects vary by up to an order of magnitude across different sub-regions and seasons, with values of 0.7–30.7 and 1.4–58.4 W msup?2/sup for BC externally mixed with fresh and aged snow spheres, respectively. The BC radiative effects are further complicated by uncertainty in snow grain shape and BC–snow mixing state. BC–snow internal mixing enhances the mean albedo effects over the plateau by 30–60 % relative to external mixing, while nonspherical snow grains decrease the mean albedo effects by up to 31 % relative to spherical grains. Based on this study, extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state are urgently needed in order to precisely evaluate BC–snow albedo effects.
机译:我们在广泛使用的“雪,冰和气溶胶辐射?”(SNICAR)模型中实现了一组新的参数化,以说明雪粒形状(球形与非球形)和黑碳?(BC)-雪混合状态(外部)的影响。与内部)。我们发现,相对于球形雪粒,非球形雪粒导致较高的纯反照率,但BC诱导的反照率降低较弱,而BC雪域内部混合相对于外部混合则显着增强了反照率的降低。雪非球面性和内部混合的结合表明对BC引起的反照率减少具有重要的相互作用。与清洁的和受BC污染的雪反照率观测值的比较表明,考虑到雪非球形性和BC-雪内部混合的模型模拟比使用球形雪粒和外部混合的常见假设的模拟效果更好。我们进一步应用更新的SNICAR模型,对青藏高原积雪中的BC浓度进行全面的原位测量,以从区域和季节的角度量化当今(2000-2015)BC引起的雪反照率影响。 BC浓度显示出明显且显着的次区域和季节变化,在非季风季节和低海拔地区具有较高的值。结果,BC引起的区域平均雪反照率减少和地表辐射效应在不同的子区域和季节之间的变化幅度最大,为0.7–30.7和1.4–58.4 W m ?2 分别表示BC与新鲜雪球和老雪球的外部混合。雪粒形状和BC-雪混合状态的不确定性进一步加剧了BC辐射效应。相对于外部混合,BC–雪内部混合将高原上的平均反照率效应提高了30–60%,而非球形雪粒将相对于球形颗粒的平均反照率降低了高达31%。基于这项研究,迫切需要对雪粒形状和气溶胶-雪混合状态进行大量测量和改进模型表征,以便精确评估BC-雪反照率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号