...
首页> 外文期刊>Atmospheric chemistry and physics >Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
【24h】

Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone

机译:一维模型PHANTAS模拟的春季北极地区的空气,雪袋中的溴,臭氧和汞交换-第1部分:雪中溴的活化及其对臭氧的影响

获取原文
           

摘要

To provide a theoretical framework towards a better understanding of ozonedepletion events (ODEs) and atmospheric mercury depletion events (AMDEs) inthe polar boundary layer, we have developed a one-dimensional model thatsimulates multiphase chemistry and transport of trace constituents fromporous snowpack and through the atmospheric boundary layer (ABL) as a unifiedsystem. This paper constitutes Part 1 of the study, describing a generalconfiguration of the model and the results of simulations related to reactivebromine release from the snowpack and ODEs during the Arctic spring. A commonset of aqueous-phase reactions describes chemistry both within theliquid-like layer (LLL) on the grain surface of the snowpack and withindeliquesced "haze" aerosols mainly composed of sulfate in the atmosphere.Gas-phase reactions are also represented by the same mechanism in theatmosphere and in the snowpack interstitial air (SIA). Consequently, themodel attains the capacity of simulating interactions between chemistry andmass transfer that become particularly intricate near the interface betweenthe atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coatedsnow grains and vertical mass transfer act simultaneously on gaseous HOBr, afraction of which enters from the atmosphere while another fraction is formedvia gas-phase chemistry in the SIA itself. A "bromine explosion", by whichHOBr formed in the ambient air is deposited and then convertedheterogeneously to Br2, is found to be a dominant process of reactivebromine formation in the top 1 mm layer of the snowpack. Deeper in thesnowpack, HOBr formed within the SIA leads to an in-snow bromine explosion,but a significant fraction of Br2 is also produced via aqueousradical chemistry in the LLL on the surface of the snow grains. These top-and deeper-layer productions of Br2 both contribute to the release ofBr2 to the atmosphere, but the deeper-layer production is found to bemore important for the net outflux of reactive bromine. Although ozone isremoved via bromine chemistry, it is also among the key species that controlboth the conventional and in-snow bromine explosions. On the other hand,aqueous-phase radical chemistry initiated by photolytic OH formation in theLLL is also a significant contributor to the in-snow source of Br2and can operate without ozone, whereas the delivery of Br2 to theatmosphere becomes much smaller after ozone is depleted. Catalytic ozone lossvia bromine radical chemistry occurs more rapidly in the SIA than in theambient air, giving rise to apparent dry deposition velocities for ozone fromthe air to the snow on the order of 10?3 cm s−1 duringdaytime. Overall, however, the depletion of ozone in the system is causedpredominantly by ozone loss in the ambient air. Increasing depth of theturbulent ABL under windy conditions will delay the buildup of reactivebromine and the resultant loss of ozone, while leading to the higher columnamount of BrO in the atmosphere. During the Arctic spring, if moderatelysaline and acidic snowpack is as prevalent as assumed in our model runs onsea ice, the shallow, stable ABL under calm weather conditions may undergopersistent ODEs without substantial contributions from blowing/drifting snowand wind-pumping mechanisms, whereas the column densities of BrO in the ABLwill likely remain too low in the course of such events to be detectedunambiguously by satellite nadir measurements.
机译:为了提供一个理论框架,以更好地了解极性边界层中的臭氧消耗事件(ODE)和大气汞消耗事件(AMDE),我们开发了一种一维模型,该模型可以模拟多相化学和痕量成分从多孔雪堆到大气的传输。边界层(ABL)作为统一系统。本文构成了研究的第1部分,描述了该模型的一般配置以及与北极春季春季从积雪和ODE中释放出的反应性溴有关的模拟结果。常见的水相反应描述了雪堆颗粒表面的液状层(LLL)和大气中主要由硫酸盐组成的潮解性“霾”气溶胶的化学性质。气相反应也由相同的机理表示在大气层和积雪间质空气中(SIA)。因此,该模型获得了模拟化学和质量传递之间相互作用的能力,该相互作用在大气与积雪之间的界面附近变得特别复杂。在SIA中,对LLL涂层的雪粒的反应性吸收和垂直传质同时作用于气态HOBr,HOBr的馏分从大气中进入,而另一部分则通过SIA本身的气相化学反应形成。发现“溴爆炸”是在积雪的顶部1 mm层中反应性溴形成的主要过程,通过该爆炸,环境空气中形成的HOBr沉积然后异质转化为Br 2 。在雪堆中更深的地方,在SIA中形成的HOBr导致雪中溴爆炸,但是通过水基化学作用在雪粒表面的LLL中也产生了大量的Br 2 。 Br 2 的这些顶层和更深层的产生都有助于向大气中释放Br 2 ,但是发现更深层的产生对于网络更重要反应性溴流出。尽管臭氧是通过溴化学去除的,但它还是控制常规和雪中溴爆炸的关键物种之一。另一方面,由LLL中的光解OH形成引发的水相自由基化学也是Br 2 的雪中来源的重要贡献,并且可以在没有臭氧的情况下运行,而Br <臭氧耗尽后,大气中的sub> 2 变小了。在SIA中,通过溴自由基化学反应产生的催化臭氧损失比在环境空气中发生的速度更快,从而导致从空气到雪中的臭氧表观干沉降速度约为10 ?3 cm s 白天-1 。但是,总的来说,系统中臭氧的消耗主要是由环境空气中的臭氧损失引起的。在大风条件下增加湍流ABL的深度将延迟反应性溴的积累和由此产生的臭氧损失,同时导致大气中更高的BrO柱含量。在北极春季,如果像我们的模型中假设的那样,中度盐度和酸性积雪在海上冰层上普遍存在,则在平静天气条件下的浅而稳定的ABL可能会经历持久的ODE,而吹雪/飘雪和抽风机制的贡献不大。在这样的事件过程中,ABL中BrO的密度可能仍然太低,无法通过卫星最低点测量清楚地检测到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号