首页> 外文OA文献 >Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS ndash; Part 1: In-snow bromine activation and its impact on ozone
【2h】

Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS ndash; Part 1: In-snow bromine activation and its impact on ozone

机译:一维模型PHANTAS模拟的春季北极地区的空气,雪袋中的溴,臭氧和汞交换–第1部分:雪中溴的活化及其对臭氧的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To provide a theoretical framework towards a better understanding of ozonedepletion events (ODEs) and atmospheric mercury depletion events (AMDEs) inthe polar boundary layer, we have developed a one-dimensional model thatsimulates multiphase chemistry and transport of trace constituents fromporous snowpack and through the atmospheric boundary layer (ABL) as a unifiedsystem. This paper constitutes Part 1 of the study, describing a generalconfiguration of the model and the results of simulations related to reactivebromine release from the snowpack and ODEs during the Arctic spring. A commonset of aqueous-phase reactions describes chemistry both within theliquid-like layer (LLL) on the grain surface of the snowpack and withindeliquesced "haze" aerosols mainly composed of sulfate in the atmosphere.Gas-phase reactions are also represented by the same mechanism in theatmosphere and in the snowpack interstitial air (SIA). Consequently, themodel attains the capacity of simulating interactions between chemistry andmass transfer that become particularly intricate near the interface betweenthe atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coatedsnow grains and vertical mass transfer act simultaneously on gaseous HOBr, afraction of which enters from the atmosphere while another fraction is formedvia gas-phase chemistry in the SIA itself. A "bromine explosion", by whichHOBr formed in the ambient air is deposited and then convertedheterogeneously to Br, is found to be a dominant process of reactivebromine formation in the top 1 mm layer of the snowpack. Deeper in thesnowpack, HOBr formed within the SIA leads to an in-snow bromine explosion,but a significant fraction of Br is also produced via aqueousradical chemistry in the LLL on the surface of the snow grains. These top-and deeper-layer productions of Br both contribute to the release ofBr to the atmosphere, but the deeper-layer production is found to bemore important for the net outflux of reactive bromine. Although ozone isremoved via bromine chemistry, it is also among the key species that controlboth the conventional and in-snow bromine explosions. On the other hand,aqueous-phase radical chemistry initiated by photolytic OH formation in theLLL is also a significant contributor to the in-snow source of Brand can operate without ozone, whereas the delivery of Br to theatmosphere becomes much smaller after ozone is depleted. Catalytic ozone lossvia bromine radical chemistry occurs more rapidly in the SIA than in theambient air, giving rise to apparent dry deposition velocities for ozone fromthe air to the snow on the order of 10 cm s duringdaytime. Overall, however, the depletion of ozone in the system is causedpredominantly by ozone loss in the ambient air. Increasing depth of theturbulent ABL under windy conditions will delay the buildup of reactivebromine and the resultant loss of ozone, while leading to the higher columnamount of BrO in the atmosphere. During the Arctic spring, if moderatelysaline and acidic snowpack is as prevalent as assumed in our model runs onsea ice, the shallow, stable ABL under calm weather conditions may undergopersistent ODEs without substantial contributions from blowing/drifting snowand wind-pumping mechanisms, whereas the column densities of BrO in the ABLwill likely remain too low in the course of such events to be detectedunambiguously by satellite nadir measurements.
机译:为了提供一个理论框架,以更好地了解极性边界层中的臭氧消耗事件(ODE)和大气汞消耗事件(AMDE),我们开发了一种一维模型,该模型可以模拟多相化学和痕量成分从多孔雪堆到大气的传输。边界层(ABL)作为统一系统。本文构成本研究的第1部分,描述了该模型的一般配置以及与北极春季春季从积雪和ODE中释放出的反应性溴有关的模拟结果。常见的水相反应描述了雪堆颗粒表面的液状层(LLL)以及大气中主要由硫酸盐组成的潮解性“雾霾”气溶胶的化学作用。气相反应也由相同的机理表示在大气层和积雪间质空气中(SIA)。因此,该模型具有模拟化学和质量传递之间相互作用的能力,在大气和积雪之间的界面附近,该相互作用变得特别复杂。在SIA中,对LLL涂层的雪粒的反应性吸收和垂直传质同时作用于气态的HOBr,其一部分从大气中进入,而另一部分则通过SIA本身的气相化学反应形成。发现“溴爆炸”是在积雪的顶部1毫米层中形成反应性溴的主要过程,通过该爆炸,环境空气中形成的HOBr沉积并随后异质转化为Br。在雪堆中更深的地方,在SIA中形成的HOBr导致雪中溴爆炸,但是通过雪粒表面LLL中的水基自由基化学反应也产生了大量的Br。这些顶层和较深层的溴生成物都有助于将溴释放到大气中,但发现较深层的生成对于反应性溴的净流出更为重要。尽管臭氧是通过溴化学去除的,但它还是控制常规和雪中溴爆炸的关键物种之一。另一方面,由LLL中的光解OH形成引发的水相自由基化学也对Brand的雪中来源可以在没有臭氧的情况下发挥重要作用,而在臭氧消耗后,Br向大气的传递变得小得多。与环境空气相比,SIA中通过溴自由基化学作用产生的催化臭氧损失速度更快,在白天,从空气到雪中臭氧的表观干沉降速度约为10 cm s。但是,总的来说,系统中臭氧的消耗主要是由环境空气中的臭氧损失引起的。在大风条件下增加湍流ABL的深度将延迟反应性溴的积累和由此产生的臭氧损失,同时导致大气中更高的BrO柱含量。在北极春季,如果像我们的模型中假设的那样,中度盐度和酸性积雪在海上冰层上普遍存在,则在平静天气条件下,浅而稳定的ABL可能会经历持久的ODE,而吹雪/飘雪和抽风机制的贡献不大。在此类事件的过程中,ABL中BrO的密度可能仍然太低,无法通过卫星最低点测量清楚地检测到。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号