...
首页> 外文期刊>Atmospheric chemistry and physics >Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation
【24h】

Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation

机译:一维模型PHANTAS模拟的春季北极地区的空气,雪袋中的溴,臭氧和汞交换-第2部分:汞及其形态

获取原文

摘要

Atmospheric mercury depletion events (AMDEs) refer to a recurring depletionof mercury occurring in the springtime Arctic (and Antarctic) boundary layer,in general, concurrently with ozone depletion events (ODEs). To close some ofthe knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs,we have developed a one-dimensional model that simulates multiphase chemistryand transport of trace constituents throughout porous snowpack and in theoverlying atmospheric boundary layer (ABL). This paper constitutes Part 2 ofthe study, describing the mercury component of the model and its applicationto the simulation of AMDEs. Building on model components reported in Part 1("In-snow bromine activation and its impact on ozone"), we have developed achemical mechanism for the redox reactions of mercury in the gas and aqueousphases with temperature dependent reaction rates and equilibrium constantsaccounted for wherever possible. Thus the model allows us to study thechemical and physical processes taking place during ODEs and AMDEs within asingle framework where two-way interactions between the snowpack and theatmosphere are simulated in a detailed, process-oriented manner. Model runsare conducted for meteorological and chemical conditions that represent thespringtime Arctic ABL characterized by the presence of "haze" (sulfateaerosols) and the saline snowpack on sea ice. The oxidation of gaseouselemental mercury (GEM) is initiated via reaction with Br-atom to form HgBr,followed by competitions between its thermal decomposition and furtherreactions to give thermally stable Hg(II) products. To shed light onuncertain kinetics and mechanisms of this multi-step oxidation process, wehave tested different combinations of their rate constants based on publishedlaboratory and quantum mechanical studies. For some combinations of the rateconstants, the model simulates roughly linear relationships between thegaseous mercury and ozone concentrations as observed during AMDEs/ODEs byincluding the reaction HgBr + BrO and assuming its rate constant to be thesame as for the reaction HgBr + Br, while for other combinations theresults are more realistic by neglecting the reaction HgBr + BrO.Speciation of gaseous oxidized mercury (GOM) changes significantly dependingon whether or not BrO is assumed to react with HgBr to form Hg(OBr)Br.Similarly to ozone (reported in Part 1), GEM is depleted via bromine radicalchemistry more vigorously in the snowpack interstitial air than in theambient air. However, the impact of such in-snow sink of GEM is found to beoften masked by the re-emissions of GEM from the snow following thephoto-reduction of Hg(II) deposited from the atmosphere. GOM formed in theambient air is found to undergo fast "dry deposition" to the snowpack bybeing trapped on the snow grains in the top ~1 mm layer. Wehypothesize that liquid-like layers on the surface of snow grains areconnected to create a network throughout the snowpack, thereby facilitatingthe vertical diffusion of trace constituents trapped on the snow grains atmuch greater rates than one would expect inside solid ice crystals.Nonetheless, on the timescale of a week simulated in this study, the signalof atmospheric deposition does not extend notably below the top 1 cm of thesnowpack. We propose and show that particulate-bound mercury (PBM) isproduced mainly as HgBr42− by taking up GOM into bromide-enrichedaerosols after ozone is significantly depleted in the air mass. In theArctic, "haze" aerosols may thus retain PBM in ozone-depleted air masses,allowing the airborne transport of oxidized mercury from the area of itsproduction farther than in the form of GOM. Temperature dependence ofthermodynamic constants calculated in this study for Henry's law andaqueous-phase halide complex formation of Hg(II) species is a critical factorfor this proposition, calling for experimental verification. The proposedmechanism may explain observed changes in the GOM–
机译:大气中的汞耗竭事件(AMDE)是指通常在春季北极(和南极)边界层发生的汞的反复耗竭,同时还涉及臭氧耗竭事件(ODE)。为了弥补AMDE和ODE的物理和化学机理中的某些知识空白,我们开发了一个一维模型,用于模拟多相化学过程以及痕量成分在多孔积雪和上层大气边界层(ABL)中的迁移。本文构成了研究的第二部分,描述了模型中的汞成分及其在AMDE模拟中的应用。基于在第1部分(“雪中溴的活化及其对臭氧的影响”)中报告的模型组件的基础上,我们开发了一种气相和水相中汞的氧化还原反应的化学机理,并在可能的情况下考虑了温度相关的反应速率和平衡常数。因此,该模型使我们能够研究在单一框架内的ODE和AMDE期间发生的化学和物理过程,其中以详细的,面向过程的方式模拟了积雪和大气之间的双向相互作用。对代表春季北极ABL的气象和化学条件进行了模型运行,其特征是在海冰上存在“薄雾”(硫酸盐气溶胶)和盐水积雪。气态元素汞(GEM)的氧化是通过与Br原子反应形成HgBr引发的,随后是其热分解和进一步反应之间的竞争,从而生成热稳定的Hg(II)产物。为了阐明这种多步氧化过程的不确定动力学和机理,我们根据已发表的实验室和量子力学研究测试了它们的速率常数的不同组合。对于速率常数的某些组合,该模型通过包括反应HgBr + BrO并假设其速率常数与反应HgBr + Br相同,从而模拟了AMDE / ODE期间观察到的气态汞与臭氧浓度之间的大致线性关系。忽略HgBr + BrO的反应是更现实的结果。根据是否假定BrO与HgBr反应形成Hg(OBr)Br,气态氧化汞(GOM)的形态发生显着变化。与臭氧类似(在第1部分中进行了报告) ),积雪的间隙空气中的溴自由基化学作用比环境空气中的溴自由基化学作用更剧烈。然而,发现这种GEM雪内沉的影响经常被从大气中沉积的Hg(II)的光还原后的雪中GEM的再排放所掩盖。发现在环境空气中形成的GOM被困在最上层〜1 mm层的雪粒上,从而迅速对积雪进行“干沉降”。我们假设,雪粒表面上的液体状层相互连接以在整个积雪中形成网络,从而促进了陷在雪粒中的微量成分的垂直扩散,其散发速率比固体冰晶内部所期望的速率大得多。在这项研究中模拟的一周时间里,大气沉积信号在雪堆的顶部1厘米以下并未显着延伸。我们提出并表明,在空气中臭氧大量耗竭后,GOM进入富含溴化物的气溶胶中,颗粒结合汞(PBM)主要以HgBr 4 2-的形式产生。 。因此,在北极,“雾霾”气溶胶可将PBM保留在消耗臭氧的空气中,从而使氧化汞从其生产区域的空气传播距离比GOM形式远。在这项研究中为亨利定律计算的热力学常数对温度的依赖性以及Hg(II)物种的水相卤化物络合物的形成是该命题的关键因素,需要进行实验验证。提议的机制可能解释了观测到的GOM变化–

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号