首页> 外文期刊>APL Materials >Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties
【24h】

Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

机译:透视图:基于Web的机器学习模型,用于实时筛选热电材料的特性

获取原文

摘要

The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25?000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE 12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE 12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.
机译:对新的热电材料的实验性搜索仍主要限于有限的一组成功的化学和结构族,例如硫属化物,方钴矿和Zintl相。原则上,诸如密度泛函理论(DFT)之类的计算工具提供了合理地指导实验合成朝着截然不同的化学方向发展的可能性。然而,在实践中,根据第一性原理预测热电性能仍然是一项艰巨的任务[J. Carrete等,Phys。 Rev. X 4,011019(2014)]和实验研究人员通常不直接使用计算来驱动自己的合成工作。为了弥合实验需求和计算工具之间的实际差距,我们报告了一种面向材料研究人员的基于开放式机器学习的推荐引擎(http://thermoelectrics.citrination.com),该引擎提出了基于预筛选约25?的新型热电成分的建议。 000种已知材料,并评估了用户设计的化合物的可行性。我们证明了该引擎可以识别与已知热电学非常不同的有趣化学。具体来说,我们描述了一组衍生自我们发动机RE 12Co5Bi(RE = Gd,Er)的示例化合物的实验表征,鉴于其具有金属d和f嵌段元素的空前高负荷,该化合物表现出令人惊讶的热电性能,并值得进一步研究。一个新的热电材料平台。我们表明,我们的发动机预测该材料家族具有低热导率和高电导率,但塞贝克系数适中,所有这些均已通过实验证实。我们注意到引擎还预测可以同时优化进入zT的所有三个属性的材料。由于其有趣的化学组成和已知的容易合成,我们选择RE 12Co5Bi用于本研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号