首页> 外文期刊>American Journal of Computational Mathematics >Some Remarks to Numerical Solutions of the Equations of Mathematical Physics
【24h】

Some Remarks to Numerical Solutions of the Equations of Mathematical Physics

机译:关于数学物理方程数值解的一些说明

获取原文
       

摘要

The equations of mathematical physics, which describe some actual processes, are defined on manifolds (tangent, a companying or others) that are not integrable. The derivatives on such manifolds turn out to be inconsistent, i.e. they don’t form a differential. Therefore, the solutions to equations obtained in numerical modelling the derivatives on such manifolds are not functions. They will depend on the commutator made up by noncommutative mixed derivatives, and this fact relates to inconsistence of derivatives. (As it will be shown, such solutions have a physical meaning). The exact solutions (functions) to the equations of mathematical physics are obtained only in the case when the integrable structures are realized. So called generalized solutions are solutions on integrable structures. They are functions (depend only on variables) but are defined only on integrable structure, and, hence, the derivatives of functions or the functions themselves have discontinuities in the direction normal to integrable structure. In numerical simulation of the derivatives of differential equations, one cannot obtain such generalized solutions by continuous way, since this is connected with going from initial nonintegrable manifold to integrable structures. In numerical solving the equations of mathematical physics, it is possible to obtain exact solutions to differential equations only with the help of additional methods. The analysis of the solutions to differential equations with the help of skew-symmetric forms [1,2] can give certain recommendations for numerical solving the differential equations.
机译:描述某些实际过程的数学物理方程是在不可积分的流形(切线,公司或其他)上定义的。这类歧管上的导数结果不一致,即它们没有形成微分。因此,在这些歧管上对导数进行数值建模时获得的方程的解不是函数。它们将取决于由非可交换混合导数组成的换向器,这一事实与导数的不一致性有关。 (如将显示的,这种解决方案具有物理意义)。仅在实现可积结构的情况下,才能获得数学物理方程的精确解(函数)。所谓的广义解就是可积结构的解。它们是函数(仅取决于变量),但仅根据可积结构定义,因此,函数的导数或函数本身在垂直于可积结构的方向上具有不连续性。在微分方程导数的数值模拟中,人们无法通过连续的方式获得这样的广义解,因为这与从初始不可积流形到可积结构有关。在数值求解数学物理方程式时,只有借助其他方法才能获得微分方程的精确解。在偏对称形式[1,2]的帮助下对微分方程解的分析可以为数值解微分方程提供一些建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号