...
首页> 外文期刊>AIP Advances >Numerical investigation of the electric field distribution and the power deposition in the resonant cavity of a microwave electrothermal thruster
【24h】

Numerical investigation of the electric field distribution and the power deposition in the resonant cavity of a microwave electrothermal thruster

机译:微波电热推进器共振腔内电场分布和功率沉积的数值研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Microwave electrothermal thruster (MET), an in-space propulsion concept, uses an electromagnetic resonant cavity as a heating chamber. In a MET system, electromagnetic energy is converted to thermal energy via a free floating plasma inside a resonant cavity. To optimize the power deposition inside the cavity, the factors that affect the electric field distribution and the resonance conditions must be accounted for. For MET thrusters, the length of the cavity, the dielectric plate that separates the plasma zone from the antenna, the antenna length and the formation of a free floating plasma have direct effects on the electromagnetic wave transmission and thus the power deposition. MET systems can be tuned by adjusting the lengths of the cavity or the antenna. This study presents the results of a 2-D axis symmetric model for the investigation of the effects of cavity length, antenna length, separation plate thickness, as well as the presence of free floating plasma on the power absorption. Specifically, electric field distribution inside the resonant cavity is calculated for a prototype MET system developed at the Bogazici University Space Technologies Laboratory. Simulations are conducted for a cavity fed with a constant power input of 1 kW at 2.45 GHz using COMSOL Multiphysics commercial software. Calculations are performed for maximum plasma electron densities ranging from 1019 to 1021 #/m3. It is determined that the optimum antenna length changes with changing plasma density. The calculations show that over 95% of the delivered power can be deposited to the plasma when the system is tuned by adjusting the cavity length.
机译:微波电热推进器(MET)是一种空间推进概念,它使用电磁谐振腔作为加热室。在MET系统中,电磁能通过谐振腔内部的自由浮动等离子体转化为热能。为了优化腔体内的功率沉积,必须考虑影响电场分布和谐振条件的因素。对于MET推进器,腔体的长度,将等离子体区域与天线分开的介电板,天线的长度以及自由浮动等离子体的形成都直接影响电磁波的传输,进而影响功率的沉积。 MET系统可以通过调整空腔或天线的长度进行调整。这项研究提出了二维轴对称模型的结果,用于研究腔体长度,天线长度,隔板厚度以及自由浮动等离子体对功率吸收的影响。具体来说,是为Bogazici大学空间技术实验室开发的MET系统原型计算共振腔内部的电场分布。使用COMSOL Multiphysics商业软件,对在2.45 GHz下输入功率为1 kW的恒定功率的空腔进行了仿真。计算的最大等离子体电子密度为10 19 到10 21 #/ m 3 。确定最佳天线长度随等离子体密度的变化而变化。计算表明,通过调整腔体长度来调整系统时,可以将超过95%的输送功率沉积到等离子体中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号