首页> 外文期刊>Algorithms >MAKHA—A New Hybrid Swarm Intelligence Global Optimization Algorithm
【24h】

MAKHA—A New Hybrid Swarm Intelligence Global Optimization Algorithm

机译:MAKHA—一种新的混合群智能全局优化算法

获取原文

摘要

The search for efficient and reliable bio-inspired optimization methods continues to be an active topic of research due to the wide application of the developed methods. In this study, we developed a reliable and efficient optimization method via the hybridization of two bio-inspired swarm intelligence optimization algorithms, namely, the Monkey Algorithm (MA) and the Krill Herd Algorithm (KHA). The hybridization made use of the efficient steps in each of the two original algorithms and provided a better balance between the exploration/diversification steps and the exploitation/intensification steps. The new hybrid algorithm, MAKHA, was rigorously tested with 27 benchmark problems and its results were compared with the results of the two original algorithms. MAKHA proved to be considerably more reliable and more efficient in tested problems.
机译:由于已开发方法的广泛应用,寻求有效且可靠的生物启发式优化方法仍然是研究的一个活跃主题。在这项研究中,我们通过将两种受生物启发的群体智能优化算法,即Monkey算法(MA)和Krill Herd算法(KHA)进行混合,开发了一种可靠且高效的优化方法。杂交利用了两种原始算法中的有效步骤,并在探索/多样化步骤与开发/强化步骤之间提供了更好的平衡。新的混合算法MAKHA经过27个基准问题的严格测试,并将结果与​​两种原始算法的结果进行了比较。事实证明,MAKHA在测试问题上更加可靠和高效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号