首页> 外文期刊>AIP Advances >Experiment-based thermal micromagnetic simulations of the magnetization reversal for ns-range clocked nanomagnetic logic
【24h】

Experiment-based thermal micromagnetic simulations of the magnetization reversal for ns-range clocked nanomagnetic logic

机译:基于实验的ns范围计时纳米磁逻辑的磁化反转的热微磁模拟

获取原文
           

摘要

Extensive thermal micromagnetic simulations, based on experimental data and parameters, were performed to investigate the magnetization reversal in Co/Pt nanomagnets with locally reduced perpendicular anisotropy on the nanosecond range. The simulations were supported by experimental data gained on manufactured Co/Pt nanomagnets, as used in nanomagnetic logic. It is known that magnetization reversal is governed by two mechanisms. At pulse lengths longer than 100 ns, thermal activation dominates the magnetization reversal processes and follows the common accepted Arrhenius law. For pulse lengths shorter than 100 ns, the dynamic reversal dominates. With the help of thermal micro-magnetic simulations we found out that the point where the both mechanisms meet is determined by the damping constant α of the multilayer film stack. The optimization of ferromagnetic multilayer film stacks enables higher clocking rates with lower power consumption and, therefore, further improve the performance of pNML.
机译:基于实验数据和参数,进行了广泛的热微磁模拟,以研究Co / Pt纳米磁体的磁化反转,该各向异性在纳秒范围内局部减小了垂直各向异性。仿真得到了用于纳米磁逻辑的制造的Co / Pt纳米磁体的实验数据的支持。众所周知,磁化反转由两种机制控制。在大于100 ns的脉冲长度上,热激活主导着磁化反转过程,并遵循公认的阿伦尼乌斯定律。对于短于100 ns的脉冲长度,动态反转占主导。在热微磁模拟的帮助下,我们发现两种机理相遇的点由多层膜叠层的阻尼常数α决定。铁磁多层薄膜叠层的优化实现了更高的时钟速率和更低的功耗,因此进一步提高了pNML的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号