...
首页> 外文期刊>Aerosol and Air Quality Research >Analysis of CO2 Migration during Nanofluid-Based Supercritical CO2 Geological Storage in Saline Aquifers
【24h】

Analysis of CO2 Migration during Nanofluid-Based Supercritical CO2 Geological Storage in Saline Aquifers

机译:盐水中基于纳米流体的超临界CO2地质存储过程中CO2迁移的分析

获取原文
           

摘要

Carbon dioxide (CO2) geological storage in deep saline aquifers is a key measure to mitigate global warming. However, it still faces a variety of technical challenges such as enhancing CO2 effective storage capacities. In this paper, a preliminary model is developed to simulate CO2 migration during nanofluid-based supercritical CO2 geological storage in saline aquifers. The main mechanisms, including Brownian motion, thermophoresis, thermal energy transfer, and interfacial tension, are included in the proposed conceptual model. Based on the high-resolution space-time conservation element and solution element (CE/SE) method, the model is used to simulate CO2 migration and distribution in the in-situ heterogeneous saline aquifer. It can be inferred that the involvement of nanoparticles decreases shear stresses opposing flow and enhances CO2 mobility in the flow boundary layer. In addition, nanoparticles increase shear stresses outside the boundary layer and retard CO2 velocity. These competitive mechanisms result in homogeneous migration of CO2 in the saline formation. One preliminary suggestion is that nanofluids enhance homogeneous CO2 transport in the reservoir and mitigate the negative effects of stratigraphic heterogeneity on migration and accumulation of the CO2 plume. CO2 effective storage capacity may be greatly elevated by means of nanofluid-based CO2 geological sequestration. The concept of nanofluid-based CO2 geological storage may be potentially conducive to large-scale commercial CO2 geological storage and useful for exploration of geothermal resources in deep-seated hot rocks. The effects of CO2 solubility and geochemical reactions on nanofluid flows may be considered in a future study.
机译:深层盐水中的二氧化碳(CO2)地质存储是缓解全球变暖的关键措施。但是,它仍然面临着各种技术挑战,例如提高二氧化碳的有效存储能力。在本文中,建立了一个初步模型来模拟盐水中基于纳米流体的超临界CO2地质存储过程中的CO2迁移。所提出的概念模型包括了主要的机制,包括布朗运动,热泳,热能传递和界面张力。该模型基于高分辨率时空守恒元素和求解元素​​(CE / SE)方法,用于模拟原位非均质盐水层中CO2的迁移和分布。可以推断,纳米粒子的参与降低了与流动相反的剪切应力,并增强了流动边界层中的CO2迁移率。此外,纳米颗粒会增加边界层外部的切应力并阻碍CO2速度。这些竞争机制导致二氧化碳在盐层中均匀迁移。一项初步建议是,纳米流体可增强储层中均匀的CO2输送,并减轻地层非均质性对CO2羽流迁移和聚集的负面影响。通过基于纳米流体的CO2地质隔离,可以大大提高CO2的有效存储能力。基于纳米流体的CO2地质封存的概念可能潜在地有利于大规模的商业CO2地质封存,并且对于深部热岩中的地热资源勘探很有用。将来的研究中可能会考虑二氧化碳溶解度和地球化学反应对纳米流体流动的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号