...
首页> 外文期刊>Chemical geology >Characterizing long-term CO2-water-rock reaction pathways to identify tracers of CO2 migration during geological storage in a low-salinity, siliciclastic reservoir system
【24h】

Characterizing long-term CO2-water-rock reaction pathways to identify tracers of CO2 migration during geological storage in a low-salinity, siliciclastic reservoir system

机译:表征长期CO2-水-岩反应路径,以识别低盐度硅质碎屑油藏系统中地质存储过程中CO2迁移的示踪剂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Given the prevailing use of saline reservoirs for geological CO2 storage projects, limited data are available on the geochemical evolution of formation water chemistry during geological CO2 storage in low-salinity formations. The low-salinity (total dissolved solids < 3000 mg/L) middle to lower Jurassic sequence in Australia's Surat Basin has been characterized as a potential reservoir system for geological CO2 storage, comprising three major siliciclastic formations with distinctly different mineral compositions. Contrasts in the geochemical responses of Jurassic sequence core samples have been identified during short-term CO2-water-rock experiments conducted under CO2 storage conditions (Farquhar et al., in this issue). If persistent, such contrasts may serve as geochemical tracers of CO2 migration within the Surat Basin. Here we use a combined batch experiment and numerical modeling approach to characterize the long-term response of the Jurassic succession to storage and migration of CO2 and to assess reaction pathway sensitivity to CO2 partial pressure. Reservoir system mineralogy was characterized for 66 core samples from Geological Survey of Queensland stratigraphic well Chinchilla 4, and six representative samples were powdered and reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures. Formation water alkalinity offers limited buffering at elevated CO2 pressures and pH rapidly declines resulting in sustained enhancement of mineral dissolution rates. Batch reactor results exhibit regional groundwater-like Sr-87/Sr-86 values (0.7048-0.7066), less radiogenic than whole-rock results (>0.7085) indicating incongruent dissolution of the reservoir matrix. Carbonate and authigenic clay dissolution are expected to be the primary reaction pathways regulating long-term formation water composition during geological CO2 storage in the Surat Basin, with lesser contributions from dissolution of the clastic matrix. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
机译:鉴于盐分储集层在地质二氧化碳存储项目中的普遍使用,在低盐度地层地质二氧化碳存储过程中,关于地层水化学地球化学演化的有限数据可用。澳大利亚苏拉特盆地中侏罗统中低盐度(总溶解固体含量<3000 mg / L)被认为是潜在的二氧化碳地质储集系统,包括三个主要的硅质碎屑岩层,其矿物成分明显不同。侏罗纪层序岩心样品地球化学响应的对比已经在二氧化碳储存条件下进行的短期二氧化碳/水-岩石实验中得到了确认(Farquhar等,本期)。如果持续存在,这种对比可以作为苏拉特盆地内二氧化碳迁移的地球化学示踪剂。在这里,我们使用组合的批处理实验和数值建模方法来表征侏罗纪演替对CO2储存和迁移的长期响应,并评估反应路径对CO2分压的敏感性。对昆士兰地层金鸡郡第4井地质调查的66个岩心样品进行了储层系统矿物学表征,将6个代表性样品粉化并与合成地层水和高纯CO2在一定压力下反应长达27天。地层水的碱度在升高的CO2压力下提供有限的缓冲作用,pH值迅速下降,从而导致矿物溶解速率持续提高。间歇式反应堆结果显示出区域性的类似于地下水的Sr-87 / Sr-86值(0.7048-0.7066),其放射成因比整岩结果(> 0.7085)低,表明储层基质溶解不良。碳酸盐和自生粘土的溶解有望成为调节苏拉特盆地地质二氧化碳储存过程中长期地层水组成的主要反应途径,而碎屑基质的溶解作用较小。官方版权(C)2014,Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号