...
首页> 外文期刊>ACS Omega >Supramolecular Approach for Efficient Processing of Polylactide/Starch Nanocomposites
【24h】

Supramolecular Approach for Efficient Processing of Polylactide/Starch Nanocomposites

机译:超分子方法可有效加工聚乳酸/淀粉纳米复合材料

获取原文
           

摘要

All-biobased and biodegradable nanocomposites consisting of poly(l-lactide) (PLLA) and starch nanoplatelets (SNPs) were prepared via a new strategy involving supramolecular chemistry, i.e., stereocomplexation and hydrogen-bonding interactions. For this purpose, a poly(d-lactide)-b -poly(glycidyl methacrylate) block copolymer (PDLA-b -PGMA) was first synthesized via the combination of ring-opening polymerization and atom-transfer radical polymerization. NMR spectroscopy and size-exclusion chromatography analysis confirmed a complete control over the copolymer synthesis. The SNPs were then mixed up with the copolymer for producing a PDLA-b -PGMA/SNPs masterbatch. The masterbatch was processed by solvent casting for which a particular attention was given to the solvent selection to preserve SNPs morphology as evidenced by transmission electron microscopy. Near-infrared spectroscopy was used to highlight the copolymer–SNPs supramolecular interactions mostly via hydrogen bonding. The prepared masterbatch was melt-blended with virgin PLLA and then thin films of PLLA/PDLA-b -PGMA/SNPs nanocomposites (ca. 600 μm) were melt-processed by compression molding. The resulting nanocomposite films were deeply characterized by thermogravimetric analysis and differential scanning calorimetry. Our findings suggest that supramolecular interactions based on stereocomplexation between the PLLA matrix and the PDLA block of the copolymer had a synergetic effect allowing the preservation of SNPs nanoplatelets and their morphology during melt processing. Quartz crystal microbalance and dynamic mechanical thermal analysis suggested a promising potential of the stereocomplex supramolecular approach in tuning PLLA/SNPs water vapor uptake and mechanical properties together with avoiding PLLA/SNPs degradation during melt processing.
机译:通过涉及超分子化学的新策略,即立体配合和氢键相互作用,制备了由聚(l-丙交酯)(PLLA)和淀粉纳米片(SNP)组成的全生物基和可生物降解的纳米复合材料。为此,首先通过开环聚合和原子转移基团的组合来合成聚(d-丙交酯)-i-b-聚(甲基丙烯酸缩水甘油酯)嵌段共聚物(PDLA-ib-PGMA)。聚合。 NMR光谱和尺寸排阻色谱分析证实了对共聚物合成的完全控制。然后将SNP与共聚物混合以产生PDLA-b-PGMA / SNPs母料。通过溶剂浇铸对母料进行处理,为此特别注意选择溶剂以保持SNP的形态,这是通过透射电子显微镜证明的。近红外光谱法主要通过氢键来突出共聚物– SNPs超分子相互作用。将制备的母料与原始PLLA熔融共混,然后通过压缩成型对PLLA / PDLA-b -PGMA / SNPs纳米复合材料薄膜(约600μm)进行熔融加工。所得的纳米复合膜通过热重分析和差示扫描量热法进行了深层表征。我们的发现表明,共聚物的PLLA基质和PDLA嵌段之间基于立体配合的超分子相互作用具有协同作用,可在熔融过程中保留SNPs纳米血小板及其形态。石英晶体微天平和动态机械热分析表明,立体复合超分子方法在调节PLLA / SNPs的水蒸气吸收和机械性能以及避免熔融加工过程中PLLA / SNPs降解方面具有广阔的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号