首页> 外文期刊>ACS Omega >Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries
【24h】

Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries

机译:含铁锂离子电池正极材料富铁正极材料的合成控制与循环过程中层状到尖晶石的结构演变

获取原文
           

摘要

As promising cathode materials for lithium-ion batteries (LIBs), Fe-containing Li-rich compounds of Li_(1+x )Fe_(0.1)Ni_(0.15)Mn_(0.55)O_(y ) (0 ≤ x ≤ 0.3 and 1.9 ≤ y ≤ 2.05) have been successfully synthesized by calcining the spherical precursors with appropriate amounts of lithium carbonate. The structures, morphologies, and chemical states of these compounds are characterized to better understand the corresponding electrochemical performances. With an increase of lithium content, Li_(1+x )Fe_(0.1)Ni_(0.15)Mn_(0.55)O_(y ) evolves from a complex layered-spinel structure to a layered structure. The lithium content also affects the average size and adhesion of the primary particles. At 0.1 C, sample x = 0.1 shows the highest first charge/discharge specific capacities (338.7 and 254.3 mA h g~(–1)), the highest first Coulombic efficiency (75.1%), the lowest first irreversible capacity loss (84.4 mA h g~(–1)), the highest reversible discharge specific capacity, and good rate capability. Notably, voltage fading can be alleviated through the adjustment of structural features. Such superior electrochemical performances of sample x = 0.1 are ascribed to the hierarchical micro-anostructure, the harmonious existence of complex layered-spinel phase, and the low charge-transfer resistance. An integral view of structure evolution from layered to spinel during synthetic control and cycling process is provided to broaden the performance scope of Li–Fe–Ni–Mn–O cathodes for LIBs.
机译:作为锂离子电池(LIB)的有前途的正极材料,含铁的Li_(1 + x)Fe_(0.1)Ni_(0.15)Mn_(0.55)O_(y)y的富锂化合物(通过用适量的碳酸锂煅烧球形前体已成功地合成了0≤x≤0.3和1.9≤y≤2.05。这些化合物的结构,形态和化学状态的特征是为了更好地理解相应的电化学性能。随着锂含量的增加,Li_(1 + x)Fe_(0.1)Ni_(0.15)Mn_(0.55)O_(y)从复杂的层状-尖晶石结构演变成层状结构。锂含量还影响初级颗粒的平均尺寸和粘附性。在0.1 C下,样品x = 0.1表示最高的首次充放电比容量(338.7和254.3 mA hg〜(–1)),最高的库仑效率(75.1%),最低的不可逆容量损耗( 84.4 mA hg〜(–1)),最高的可逆放电比容量和良好的倍率能力。值得注意的是,可以通过调整结构特征来减轻电压衰减。样品x = 0.1的这种优异的电化学性能归因于分层的微观/纳米结构,复杂的层状-尖晶石相的和谐存在以及低的电荷转移电阻。提供了在合成控制和循环过程中从层状结构到尖晶石结构演变的完整视图,以扩大LiBs的Li–Fe–Ni–Mn–O阴极的性能范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号