首页> 美国卫生研究院文献>ACS Omega >Structure Evolution from Layered to Spinel duringSynthetic Control and Cycling Process of Fe-Containing Li-Rich CathodeMaterials for Lithium-Ion Batteries
【2h】

Structure Evolution from Layered to Spinel duringSynthetic Control and Cycling Process of Fe-Containing Li-Rich CathodeMaterials for Lithium-Ion Batteries

机译:从分层到尖晶石的结构演变含铁富锂阴极的合成控制与循环过程锂离子电池材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As promising cathode materials for lithium-ion batteries (LIBs), Fe-containing Li-rich compounds of Li1+xFe0.1Ni0.15Mn0.55Oy (0 ≤ x ≤ 0.3 and 1.9 ≤ y ≤ 2.05) have been successfully synthesized by calcining the spherical precursors with appropriate amounts of lithium carbonate. The structures, morphologies, and chemical states of these compounds are characterized to better understand the corresponding electrochemical performances. With an increase of lithium content, Li1+xFe0.1Ni0.15Mn0.55Oy evolves from a complex layered-spinel structure to a layered structure. The lithium content also affects the average size and adhesion of the primary particles. At 0.1 C, sample x = 0.1 shows the highest first charge/discharge specific capacities (338.7 and 254.3 mA h g–1), the highest first Coulombic efficiency (75.1%), the lowest first irreversible capacity loss (84.4 mA h g–1), the highest reversible discharge specific capacity, and good rate capability. Notably, voltage fading can be alleviated through the adjustment of structural features. Such superior electrochemical performances of sample x = 0.1 are ascribed to the hierarchical micro-anostructure, the harmonious existence of complex layered-spinel phase, and the lowcharge-transfer resistance. An integral view of structure evolutionfrom layered to spinel during synthetic control and cycling processis provided to broaden the performance scope of Li–Fe–Ni–Mn–Ocathodes for LIBs.
机译:作为锂离子电池(LIBs)的有希望的正极材料,已经通过煅烧将Li1 + xFe0.1Ni0.15Mn0.55Oy(0≤x≤0.3和1.9≤y≤2.05)的含铁富锂化合物成功合成。适量碳酸锂的球形前体。这些化合物的结构,形态和化学状态的特征是为了更好地理解相应的电化学性能。随着锂含量的增加,Li1 + xFe0.1Ni0.15Mn0.55Oy从复杂的层状-尖晶石结构演变为层状结构。锂含量还影响初级颗粒的平均尺寸和粘附性。在0.1 C下,样品x = 0.1显示出最高的首次充放电比容量(338.7和254.3 mA hg –1 ),最高的第一库仑效率(75.1%),最低的不可逆的第一容量损失(84.4 mA hg –1 ),最高的可逆放电比容量和良好的倍率能力。显然,可以通过调整结构特征来减轻电压衰减。样品x = 0.1的这种优异的电化学性能归因于分层的微观/纳米结构,复杂的层状-尖晶石相的和谐存在以及较低的电荷转移电阻。结构演变的完整视图在合成控制和循环过程中从分层到尖晶石提供以扩大Li–Fe–Ni–Mn–O的性能范围LIB的阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号