...
首页> 外文期刊>ACS Omega >Influence of Diesel Fuel Viscosity on Cavitating Throttle Flow Simulations under Erosive Operation Conditions
【24h】

Influence of Diesel Fuel Viscosity on Cavitating Throttle Flow Simulations under Erosive Operation Conditions

机译:侵蚀工况下柴油燃料粘度对空化节气门流动模拟的影响

获取原文

摘要

This work investigates the effect of liquid fuel viscosity, as specific by the European Committee for Standardization 2009 (European Norm) for all automotive fuels, on the predicted cavitating flow in micro-orifice flows. The wide range of viscosities allowed leads to a significant variation in orifice nominal Reynolds numbers for the same pressure drop across the orifice. This in turn, is found to affect flow detachment and the formation of large-scale vortices and microscale turbulence. A pressure-based compressible solver is used on the filtered Navier–Stokes equations using the multifluid approach; separate velocity fields are solved for each phase, which share a common pressure. The rates of evaporation and condensation are evaluated with a simplified model based on the Rayleigh–Plesset equation; the coherent structure model is adopted for the subgrid scale modeling in the momentum conservation equation. The test case simulated is a well-reported benchmark throttled flow channel geometry, referred to as “I-channel”; this has allowed for easy optical access for which flow visualization and laser-induced fluorescence measurements allowed for validation of the developed methodology. Despite its simplicity, the I-channel geometry is found to reproduce the most characteristic flow features prevailing in high-speed flows realized in cavitating fuel injectors. Subsequently, the effect of liquid viscosity on integral mass flow, velocity profiles, vapor cavity distribution, and pressure peaks indicating locations prone to cavitation erosion is reported.
机译:这项工作研究了液体燃料粘度(如欧洲标准化委员会2009(欧洲规范)对所有汽车燃料所规定的)对微孔流中预计的空化流的影响。对于整个孔口相同的压降,允许的粘度范围很广,会导致孔口标称雷诺数发生显着变化。进而发现这会影响流动分离以及形成大型旋涡和微尺度湍流。基于压力的可压缩求解器通过多流体方法用于滤波后的Navier-Stokes方程。为每个阶段求解单独的速度场,它们共享一个共同的压力。蒸发和凝结的速率通过基于瑞利-普莱塞方程的简化模型进行评估。动量守恒方程的子网格尺度建模采用了相干结构模型。模拟的测试用例是报告良好的基准节流流道几何形状,称为“ I通道”;这样可以方便地进行光学访问,通过流动可视化和激光诱导的荧光测量可以验证开发的方法。尽管它很简单,但I通道的几何形状仍能再现空化喷油器中实现的高速流动中普遍存在的最具特征性的流动特征。随后,报道了液体粘度对整体质量流量,速度分布,蒸汽腔分布和压力峰值的影响,表明易于发生气蚀的位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号