...
首页> 外文期刊>ACS Omega >Electronic Structure of In3–xSe4 Electron Transport Layer for Chalcogenide/p-Si Heterojunction Solar Cells
【24h】

Electronic Structure of In3–xSe4 Electron Transport Layer for Chalcogenide/p-Si Heterojunction Solar Cells

机译:硫族化物/ p-Si异质结太阳能电池In3-xSe4电子传输层的电子结构

获取原文

摘要

In this article, we perform density functional theory calculation to investigate the electronic and optical properties of newly reported In3–xSe4 compound using CAmbridge Serial Total Energy Package (CASTEP). Structural parameters obtained from the calculations agree well with the available experimental data, indicating their stability. In the band structure of In3–xSe4 (x = 0, 0.11, and, 0.22), the Fermi level (EF) crossed over several bands in the conduction bands, which is an indication of the n-type metal-like behavior of In3–xSe4 compounds. On the other hand, the band structure of In3–xSe4 (x = 1/3) exhibits semiconducting nature with a band gap of ~0.2 eV. A strong hybridization among Se 4s, Se 4p and In 5s, In 5p orbitals for In3Se4 and that between Se 4p and In 5p orbitals were seen for β-In2Se3 compound. The dispersion of In 5s, In 5p and Se 4s, Se 4p orbitals is responsible for the electrical conductivity of In3Se4 that is confirmed from DOS calculations as well. Moreover, the bonding natures of In3–xSe4 materials have been discussed based on the electronic charge density map. Electron-like Fermi surface in In3Se4 ensures the single-band nature of the compound. The efficiency of the In3–xSe4/p-Si heterojunction solar cells has been calculated by Solar Cell Capacitance Simulator (SCAPS)-1D software using experimental data of In3–xSe4 thin films. The effect of various physical parameters on the photovoltaic performance of In3–xSe4/p-Si solar cells has been investigated to obtain the highest efficiency of the solar cells. The optimized power conversion efficiency of the solar cell is found to be 22.63% with VOC = 0.703 V, JSC = 38.53 mA/cm2, and FF = 83.48%. These entire theoretical predictions indicate the promising applications of In3–xSe4 two-dimensional compound to harness solar energy in near future.
机译:在本文中,我们使用CAmbridge串行总能量包(CASTEP)进行密度泛函理论计算,以研究新报道的In3-xSe4化合物的电子和光学性质。从计算中获得的结构参数与可用的实验数据非常吻合,表明它们的稳定性。在In3–xSe4的能带结构(x = 0、0.11和0.22)中,费米能级(EF)跨导带中的多个能带,这表明In3的n型金属行为-xSe4化合物。另一方面,In3-xSe4(x = 1/3)的能带结构表现出半导体性质,带隙为〜0.2 eV。对于β3 In 2 Se 3化合物,发现In 3 Se 4的Se 4s,Se 4p和In 5s,In 5p轨道之间存在强杂交,而Se 4p和In 5p轨道之间则发生强杂交。 In 5s,In 5p和Se 4s,Se 4p轨道的色散也负责In3Se4的电导率,这也可以通过DOS计算得到证实。此外,已基于电子电荷密度图讨论了In3-xSe4材料的键合性质。 In3Se4中类似电子的费米表面可确保化合物的单带性质。 In3–xSe4 / p-Si异质结太阳能电池的效率已使用In3–xSe4薄膜的实验数据通过太阳能电池电容模拟器(SCAPS)-1D软件进行了计算。为了获得最高效率的太阳能电池,已经研究了各种物理参数对In3-xSe4 / p-Si太阳能电池光伏性能的影响。发现当VOC = 0.703 V,JSC = 38.53 mA / cm2和FF = 83.48%时,太阳能电池的最佳功率转换效率为22.63%。这些全部的理论预测表明,In3-xSe4二维化合物在不久的将来可以利用太阳能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号