...
首页> 外文期刊>ACS Omega >Estimating Strengths of Individual Hydrogen Bonds in RNA Base Pairs: Toward a Consensus between Different Computational Approaches
【24h】

Estimating Strengths of Individual Hydrogen Bonds in RNA Base Pairs: Toward a Consensus between Different Computational Approaches

机译:估计RNA碱基对中单个氢键的强度:走向不同计算方法之间的共识。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Noncoding RNA molecules are composed of a large variety of noncanonical base pairs that shape up their functionally competent folded structures. Each base pair is composed of at least two interbase hydrogen bonds (H-bonds). It is expected that the characteristic geometry and stability of different noncanonical base pairs are determined collectively by the properties of these interbase H-bonds. We have studied the ground-state electronic properties [using density functional theory (DFT) and DFT-D3-based methods] of all the 118 normal base pairs and 36 modified base pairs, belonging to 12 different geometric families (cis and trans of WW, WH, HH, WS, HS, and SS) that occur in a nonredundant set of high-resolution RNA crystal structures. Having addressed some of the limitations of the earlier approaches, we provide here a comprehensive compilation of the average energies of different types of interbase H-bonds (EHB). We have also characterized each interbase H-bond using 13 different parameters that describe its geometry, charge distribution at its bond critical point (BCP), and n → σ*-type charge transfer from filled π orbitals of the H-bond acceptor to the empty antibonding orbital of the H-bond donor. On the basis of the extent of their linear correlation with the H-bonding energy, we have shortlisted five parameters to model linear equations for predicting EHB values. They are (i) electron density at the BCP: ρ, (ii) its Laplacian: ?2ρ, (iii) stabilization energy due to n → σ*-type charge transfer: E(2), (iv) donor–hydrogen distance, and (v) hydrogen–acceptor distance. We have performed single variable and multivariable linear regression analysis over the normal base pairs and have modeled sets of linear relationships between these five parameters and EHB. Performance testing of our model over the set of modified base pairs shows promising results, at least for the moderately strong H-bonds.
机译:非编码RNA分子由各种各样的非规范碱基对组成,这些碱基对可形成其功能上有效的折叠结构。每个碱基对由至少两个碱基间氢键(H键)组成。可以预期,不同非规范碱基对的特征几何形状和稳定性是由这些碱基间氢键的性质共同决定的。我们研究了所有118个正常碱基对和36个修饰碱基对的基态电子性质[使用密度泛函理论(DFT)和基于DFT-D3的方法],它们属于12个不同的几何族(WW的顺式和反式) ,WH,HH,WS,HS和SS)出现在一组非冗余的高分辨率RNA晶体结构中。解决了早期方法的一些局限性之后,我们在这里提供了不同类型的基间氢键(EHB)的平均能量的全面汇编。我们还使用13个不同的参数对每个基间H键进行了表征,这些参数描述了其几何形状,在其键临界点(BCP)处的电荷分布以及n→σ*型电荷从H键受体的填充π轨道转移至H键H键供体的空抗键轨道。根据它们与氢键能线性相关的程度,我们选择了五个参数来建模用于预测EHB值的线性方程。它们是(i)BCP处的电子密度:ρ,(ii)拉普拉斯算子:2ρ,(iii)由于n→σ*型电荷转移而产生的稳定能:E(2),(iv)供体-氢距离和(v)氢受体距离。我们对正常碱基对进行了单变量和多变量线性回归分析,并对这五个参数与EHB之间的线性关系进行了建模。我们的模型在一组经过修饰的碱基对上的性能测试显示出令人满意的结果,至少对于中等强度的H键而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号