首页> 美国卫生研究院文献>ACS Omega >Estimating Strengths of Individual Hydrogen Bondsin RNA Base Pairs: Toward a Consensus between Different Computational Approaches
【2h】

Estimating Strengths of Individual Hydrogen Bondsin RNA Base Pairs: Toward a Consensus between Different Computational Approaches

机译:估算单个氢键的强度RNA碱基对中的DNA:在不同计算方法之间达成共识

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Noncoding RNA molecules are composed of a large variety of noncanonical base pairs that shape up their functionally competent folded structures. Each base pair is composed of at least two interbase hydrogen bonds (H-bonds). It is expected that the characteristic geometry and stability of different noncanonical base pairs are determined collectively by the properties of these interbase H-bonds. We have studied the ground-state electronic properties [using density functional theory (DFT) and DFT-D3-based methods] of all the 118 normal base pairs and 36 modified base pairs, belonging to 12 different geometric families (cis and trans of WW, WH, HH, WS, HS, and SS) that occur in a nonredundant set of high-resolution RNA crystal structures. Having addressed some of the limitations of the earlier approaches, we provide here a comprehensive compilation of the average energies of different types of interbase H-bonds (EHB). We have also characterized each interbase H-bond using 13 different parameters that describe its geometry, charge distribution at its bond critical point (BCP), and n → σ*-type charge transfer from filled π orbitals of the H-bond acceptorto the empty antibonding orbital of the H-bond donor. On the basisof the extent of their linear correlation with the H-bonding energy,we have shortlisted five parameters to model linear equations forpredicting EHB values. They are (i) electrondensity at the BCP: ρ, (ii) its Laplacian: ∇2ρ, (iii) stabilization energy due to n → σ*-typecharge transfer: E(2), (iv) donor–hydrogendistance, and (v) hydrogen–acceptor distance. We have performedsingle variable and multivariable linear regression analysis overthe normal base pairs and have modeled sets of linear relationshipsbetween these five parameters and EHB.Performance testing of our model over the set of modified base pairsshows promising results, at least for the moderately strong H-bonds.
机译:非编码RNA分子由各种各样的非规范碱基对组成,这些碱基对可形成其功能上有效的折叠结构。每个碱基对由至少两个碱基间氢键(H键)组成。可以预期,不同非规范碱基对的特征几何形状和稳定性是由这些碱基间氢键的性质共同决定的。我们研究了属于118个正常碱基对和36个修饰碱基对的12种不同几何族(WW的顺式和反式)的基态电子性质[使用密度泛函理论(DFT)和基于DFT-D3的方法] ,WH,HH,WS,HS和SS)出现在一组非冗余的高分辨率RNA晶体结构中。解决了早期方法的一些局限性之后,我们在这里提供了不同类型的基间氢键(EHB)的平均能量的全面汇编。我们还使用13个不同的参数对每个基间H键进行了表征,这些参数描述了其几何形状,在其键临界点(BCP)处的电荷分布,以及从H键受体的填充π轨道进行n→σ*型电荷转移到氢键供体的空抗键轨道。基本上来说与氢键能的线性相关程度我们已经选择了五个参数来建模线性方程预测EHB值。它们是(i)电子BCP处的密度:ρ,(ii)拉普拉斯算子:∇ 2 ρ,(iii)由于n→σ*型而产生的稳定能电荷转移:E(2),(iv)供体氢距离,以及(v)氢受体距离。我们已经执行了单变量和多变量线性回归分析正常碱基对并具有线性关系的建模集在这五个参数和EHB之间。在经过修改的碱基对集合上对我们的模型进行性能测试至少对于中等强度的氢键显示出令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号