...
首页> 外文期刊>Achievements in the Life Sciences >Glucose-6-phosphate Dehydrogenase Activity During N?-nitrosodiethylamine-induced Hepatic Damage
【24h】

Glucose-6-phosphate Dehydrogenase Activity During N?-nitrosodiethylamine-induced Hepatic Damage

机译:Nα-亚硝基二乙胺引起的肝损伤过程中6-磷酸葡萄糖的脱氢酶活性

获取原文

摘要

Abstract Glucose-6-phosphate dehydrogenase (G6PD), a key regulatory enzyme of the pentose phosphate pathway, catalyses the first rate-limiting reaction to produce ribose-5-phosphate for nucleic acid synthesis and {NADPH} to use in reductive biosynthesis. The available studies indicate an antioxidant role for {G6PD} and variation in its levels as a result of cellular insult. In this study, the activity of {G6PD} was monitored during N?-nitrosodiethylamine (NDEA)-induced hepatic damage in Wistar rats. {NDEA} generates hepatotoxicity and possesses mutagenic effects. To induce hepatic damage, {NDEA} was administered at doses of 100 mg kg? 1 body weight week? 1 (i.p.) for 14 days. The animals of the control and treated groups were sacrificed each week. The extent of liver damage was ensured by {LFT} biomarkers, such as transaminases, ALP, bilirubin and the hepato-somatic index (HSI) along with histopathological observations of H&E and Masson's trichrome stained liver specimens. The results of the present study show that at the selected doses, {NDEA} significantly elevates {LFT} proteins and bilirubin and damages the lobular architecture in a dose-dependent manner. Software analysis of zymograms indicates maximum activity of the hepatic {G6PD} levels in day-14 NDEA-treated animals. Our spectrophotometry data further support the above findings on hepatic {G6PD} levels and demonstrate an approximately 1.63 × and 1.66 × fold increase in day-7 and day-14 {NDEA} intoxicated animals (P < 0.05). It is concluded that elevation in the {G6PD} activity is apparently the consequence of NDEA-induced intoxication or oxidative stress, leading to hepatic damage to provide sufficient {NADPH} for microsomal detoxification and ribose-5-phosphate for {DNA} synthesis and repair, respectively, to maintain the cellular redox status.
机译:摘要磷酸戊糖途径中的关键调节酶6-磷酸葡萄糖脱氢酶(G6PD)催化了第一个限速反应,生成核糖5-磷酸用于核酸合成和{NADPH}用于还原性生物合成。现有的研究表明{G6PD}具有抗氧化剂作用,并且由于细胞侵害而导致其水平发生变化。在这项研究中,{G6PD}的活性在Nα-亚硝基二乙胺(NDEA)诱导的Wistar大鼠肝损伤期间被监测。 {NDEA}产生肝毒性并具有诱变作用。为了诱导肝损害,{NDEA}的剂量为100 mg / kg? 1周体重? 1(i.p.),持续14天。每周处死对照组和治疗组的动物。肝损伤的程度由{LFT}生物标志物(例如转氨酶,ALP,胆红素和肝体指数(HSI))以及H&E和Masson三色染色的肝标本的组织病理学观察结果确定。本研究的结果表明,在选定的剂量下,{NDEA}显着升高{LFT}蛋白和胆红素,并以剂量​​依赖性方式损害小叶结构。酶谱图的软件分析表明,在第14天接受NDEA处理的动物中,肝脏{G6PD}水平的最大活性。我们的分光光度数据进一步证明了上述肝脏{G6PD}水平的发现,并证明在第7天和第14天{NDEA}中毒的动物中,肝脏{G6PD}的水平增加了约1.63倍和1.66倍(P <0.05)。结论是{G6PD}活性的升高显然是NDEA引起的中毒或氧化应激的结果,导致肝损伤,从而为微粒体解毒提供了足够的{NADPH},为{DNA}的合成和修复提供了核糖5-磷酸。分别维持细胞的氧化还原状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号