首页> 外文期刊>Computational Methods in Science and Technologygy >Propagation of Harmonic Plane Waves in a Rotating Elastic Medium under Two-Temperature Thermoelasticity with Relaxation Parameter
【24h】

Propagation of Harmonic Plane Waves in a Rotating Elastic Medium under Two-Temperature Thermoelasticity with Relaxation Parameter

机译:具有松弛参数的两温热弹性条件下旋转弹性介质中谐波平面波的传播

获取原文
获取外文期刊封面目录资料

摘要

The present work investigates the propagation of harmonic plane waves in an isotropic and homogeneous elastic medium that is rotating with uniform angular velocity by employing the two-temperature generalized thermoelasticity, recently introduced by Youssef (IMA Journal of Applied Mathematics, 71, 383-390, 2006). Dispersion relation solutions for longitudinal as well as transverse plane waves are obtained analytically. Asymptotic expressions of several important characterizations of the wave fields, such as phase velocity, specific loss, penetration depth, amplitude coefficient factor and phase shift of thermodynamic temperature are obtained for high frequency as well as low frequency values. A critical value of the two-temperature parameter for the low frequency case is obtained. Using Mathematica, numerical values of the wave fields at intermediate values of frequency and for various values of the twotemperature parameter are computed. A detailed analysis of the effects of rotation on the plane wave is presented on the basis of analytical and numerical results. An in-depth comparative analysis of our results with the corresponding results of the special cases of absence of rotation of the body and with the case of generalized thermoelasticity is also presented. The most significant points are highlighted.
机译:目前的工作是利用Youssef(IMA,应用数学杂志,71,383-390,2000)引入的两温广义热弹性研究谐平面波在各向同性且均匀角速度旋转的均质弹性介质中的传播。 2006)。通过解析获得纵向和横向平面波的色散关系解。对于高频和低频值,获得了波场的几个重要特征的渐近表达式,例如相速度,比损耗,穿透深度,幅度系数因子和热力学温度的相移。获得了低频情况下的两个温度参数的临界值。使用Mathematica,计算在中间频率值处和在两个温度参数的各个值处的波场的数值。在分析和数值结果的基础上,详细介绍了旋转对平面波的影响。还提供了对我们的结果的深入比较分析,以及没有身体旋转的特殊情况和广义热弹性情况下的相应结果。突出显示最重要的点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号