首页> 外文期刊>Computation >An Incompressible, Depth-Averaged Lattice Boltzmann Method for Liquid Flow in Microfluidic Devices with Variable Aperture
【24h】

An Incompressible, Depth-Averaged Lattice Boltzmann Method for Liquid Flow in Microfluidic Devices with Variable Aperture

机译:可变孔径微流体装置中不可流动的深度平均格子Boltzmann方法

获取原文
获取外文期刊封面目录资料

摘要

Two-dimensional (2D) pore-scale models have successfully simulated microfluidic experiments of aqueous-phase flow with mixing-controlled reactions in devices with small aperture. A standard 2D model is not generally appropriate when the presence of mineral precipitate or biomass creates complex and irregular three-dimensional (3D) pore geometries. We modify the 2D lattice Boltzmann method (LBM) to incorporate viscous drag from the top and bottom microfluidic device (micromodel) surfaces, typically excluded in a 2D model. Viscous drag from these surfaces can be approximated by uniformly scaling a steady-state 2D velocity field at low Reynolds number. We demonstrate increased accuracy by approximating the viscous drag with an analytically-derived body force which assumes a local parabolic velocity profile across the micromodel depth. Accuracy of the generated 2D velocity field and simulation permeability have not been evaluated in geometries with variable aperture. We obtain permeabilities within approximately 10% error and accurate streamlines from the proposed 2D method relative to results obtained from 3D simulations. In addition, the proposed method requires a CPU run time approximately 40 times less than a standard 3D method, representing a significant computational benefit for permeability calculations.
机译:二维(2D)孔尺度模型已成功地模拟了在小孔径设备中具有混合控制反应的水相流微流实验。当矿物沉淀或生物质的存在产生复杂且不规则的三维(3D)孔几何形状时,通常不适合使用标准2D模型。我们修改2D格子Boltzmann方法(LBM),以合并来自顶部和底部微流体设备(微模型)表面的粘性阻力,通常不包括在2D模型中。通过均匀缩放低雷诺数下的稳态2D速度场,可以估算出这些表面的粘性阻力。我们通过用分析得出的体力近似粘性阻力来证明提高了精度,该体力假定了整个微模型深度的局部抛物线速度分布。尚未在具有可变孔径的几何形状中评估生成的2D速度场和模拟渗透率的准确性。相对于从3D模拟获得的结果,我们从所提出的2D方法获得的渗透率大约在10%的误差范围内,并且流线型准确。另外,所提出的方法需要的CPU运行时间比标准3D方法少40倍左右,这对于渗透率计算具有显着的计算优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号