...
首页> 外文期刊>Cell adhesion & migration >Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates
【24h】

Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates

机译:在微图案化基质上以时空控制的(去)粘附动力学探测内皮细胞的细胞骨架预应力和核力学

获取原文
           

摘要

ABSTRACT The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (60?min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures.
机译:摘要活​​细胞的机械性能反映了它们迁移和响应外力的倾向。通过细胞和核骨架蛋白连接的重组,细胞和核的刚度都受到胞外基质(ECM)刚度的强烈影响。这种结构上的连续性变化会影响细胞力学,并成为许多病理条件的基础。在这种情况下,对细胞和细胞核的机械性能进行准确而综合的量化可以有助于更好地理解细胞功能(功能障碍)。为了解决这一挑战,我们建立了一种鲁棒的方法来探测从微图案化基材扩散和分离过程中的细胞和核变形。我们表明,内皮细胞的(去)粘附动力学受基质刚度调节,并依赖于肌动球蛋白网络。我们将这种方法与用镊子测量细胞刚度相结合,表明松弛动力学可以被认为是粘附细胞中细胞预应力的可靠参数。在粘着阶段,很长一段时间(> 60?min)会发生大的细胞和核变形。相反,在分离后几秒钟内核变形和浓缩的染色质被松弛。最后,我们的结果表明,法尼基化的醇溶蛋白的积累导致核粘弹性性质的改变,这可以通过增加核弛豫时间来反映。我们的方法提供了一种同时测量细胞和核力学的原始且非侵入性的方法,该方法可以扩展到病理状态和潜在对策的高通量筛选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号