...
首页> 外文期刊>Cell death discovery. >Simulated microgravity induces a cellular regression of the mature phenotype in human primary osteoblasts
【24h】

Simulated microgravity induces a cellular regression of the mature phenotype in human primary osteoblasts

机译:模拟微重力诱导人类原代成骨细胞成熟表型的细胞退化

获取原文
           

摘要

Decreased mechanical loading on bones, such as prolonged bed rest and microgravity during space flights, leads to the development of an osteoporotic-like phenotype. Although osteoblast hypo-functionality is reported to be involved in the progression of bone pathological conditions, the cellular mechanisms of this process remain largely unknown. The combined application of mass spectrometry “–omics” and histochemical and ultrastructural approaches have been employed to investigate the effects of the gravitational unloading on human bone-cell biology. Here we show, ex vivo, that simulated microgravity (Sμg) on human primary osteoblasts (hpOB) induces an alteration of pro-osteogenic determinants (i.e., cell morphology and deposit of hydroxyapatite crystals), accompanied by a downregulation of adhesive proteins and bone differentiation markers (e.g., integrin beta-1, protein folding Crystallin Alpha B (CRYα-B), runt-related transcription factor 2 (RUNX-2), bone morphogenic protein-2 (BMP-2), and receptor activator of nuclear factor kappa-B ligand (RANK-L)), indicating an impairment of osteogenesis. Further, we observed for the first time that Sμg can trigger a transition toward a mesenchymal-like phenotype, in which a mature osteoblast displays an hampered vitamin A metabolism, loses adhesive molecules, gains mesenchymal components (e.g., pre-osteoblast state marker CD44), morphological protrusions (filopodium-like), enhances GTPase activities, which in turn allows it to acquire migrating properties. Although this phenotypic conversion is not complete and can be reversible, Sμg environment proves a plasticity potential hidden on Earth. Overall, our results suggest that Sμg can be a powerful physical cue for triggering ex vivo a dedifferentiation impulse on hpOBs, opening a new scenario of possible innovative therapeutical biomechanical strategies for the treatment of osteo-degenerative diseases.
机译:骨骼上的机械负荷减少,例如长时间的卧床休息和太空飞行中的微重力,会导致骨质疏松样表型的发展。尽管据报道成骨细胞功能低下与骨病理状况的进展有关,但该过程的细胞机制仍然未知。质谱“组学”与组织化学和超微结构方法的结合应用已被用于研究重力卸载对人体骨细胞生物学的影响。在这里,我们在体内显示出,人类原代成骨细胞(hpOB)上的微重力(Sμg)诱导了成骨决定簇的改变(即细胞形态和羟基磷灰石晶体的沉积),并伴随着黏着蛋白的下调和骨分化标记(例如整联蛋白β-1,蛋白质折叠Crystallin Alpha B(CRYα-B),矮子相关转录因子2(RUNX-2),骨形态发生蛋白2(BMP-2)和核因子κ受体激活剂-B配体(RANK-L)),表明成骨能力受损。此外,我们首次观察到Sμg可以触发向间充质样表型的转变,其中成熟的成骨细胞显示出维生素A代谢受阻,失去粘附分子,获得间充质成分(例如成骨细胞前状态标志物CD44)形态突起(丝状)可以增强GTPase的活性,进而使其具有迁移特性。尽管这种表型转换不完全且可以逆转,但Sμg环境证明隐藏在地球上具有可塑性。总体而言,我们的研究结果表明,Sμg可能是触发hpOB体外去分化冲动的有力物理提示,从而为治疗骨变性疾病提供了可能的创新性治疗生物力学策略的新场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号