首页> 外文期刊>Canadian Journal of Biotechnology >Steroid catabolism in bacteria: Genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21
【24h】

Steroid catabolism in bacteria: Genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21

机译:细菌中的类固醇分解代谢:恶臭假单胞菌 DOC21中 stdH stdJ 的遗传和功能分析

获取原文
           

摘要

Pseudomonas putida DOC21 assimilates a large variety of steroids, including bile acids, via a single 9, 10-seco pathway. Two specific mutants knocked down in stdH and stdJ were obtained by deletion (strains P. putida DOC21ΔstdH and P. putida DOC21ΔstdJ). Analysis of these mutants revealed that both had lost the ability to fully degrade bile acids and that the genes stdH and stdJ are involved in oxidation of the A and B rings of the polycyclic steroid structure. Moreover, whereas P. putida DOC21ΔstdH and P. putida DOC21ΔstdJ were unable to degrade testosterone or 4-androstene-3,17-dione (AD), P. putida DOC21ΔstdJ was also unable to assimilate androsta-1,4-diene-3,17-dione (ADD). When cultured in medium containing lithocholate and succinate, P. putida DOC21ΔstdH and P. putida DOC21ΔstdJ accumulated AD and ADD, respectively. Genetic and bioinformatics analyses revealed that: (i) stdH encodes a 3-ketosteroid-Δ1-dehydrogenase; (ii) StdJ is the reductase component of a 3-ketosteroid 9α-hydroxylase; (iii) the trans-expression of stdH and stdJ in the corresponding mutant restored the lost catabolic function(s), and (iv) full steroid metabolism by P. putida DOC21ΔstdH was restored by its expression of kstD2, but not kstD1 or kstD3, of Rhodococcus ruber Chol-4. Our results shed light on the systems used by bacteria to oxidize the A and B rings of steroid compounds. In addition, as the mutants described herein were able to synthesize two pharmaceutically important synthons, AD and ADD, they may be of value in industrial applications.
机译:恶臭假单胞菌(Pseudomonas putida)DOC21通过一个9、10-seco途径同化多种类固醇,包括胆汁酸。通过缺失获得了在stdH和stdJ中被击倒的两个特异性突变体(菌株恶臭假单胞菌DOC21ΔstdH和恶臭假单胞菌DOC21ΔstdJ)。对这些突变体的分析表明,它们都失去了完全降解胆汁酸的能力,并且基因stdH和stdJ参与了多环甾体结构的A和B环的氧化。此外,恶臭假单胞菌DOC21ΔstdH和恶臭假单胞菌DOC21ΔstdJ无法降解睾丸激素或4-雄烯酮3,17-二酮(AD),恶臭假单胞菌DOC21ΔstdJ也无法吸收雄激素1,4-二烯-3, 17-二酮(ADD)。当在含有石胆酸盐和琥珀酸盐的培养基中培养时,恶臭假单胞菌DOC21ΔstdH和恶臭假单胞菌DOC21ΔstdJ分别累积AD和ADD。遗传和生物信息学分析表明:(i)stdH编码3-酮类固醇-Δ 1 -脱氢酶; (ii)StdJ是3-酮类固醇9α-羟化酶的还原酶成分; (iii)在相应的突变体中stdH和stdJ的反式表达恢复了丧失的分解代谢功能,并且(iv)恶臭假单胞菌DOC21ΔstdH的全部类固醇代谢通过其kstD2的表达而得以恢复,但不表达kstD1或kstD3,红球菌Chol-4。我们的结果揭示了细菌用来氧化类固醇化合物的A和B环的系统。另外,由于本文所述的突变体能够合成两种药学上重要的合成子AD和ADD,因此它们在工业应用中可能具有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号