首页> 外文期刊>Bulletin of the Korean Mathematical Society >An analogue of the Hilton-Milner theorem for weak compositions
【24h】

An analogue of the Hilton-Milner theorem for weak compositions

机译:弱构图的Hilton-Milner定理的类似物

获取原文
           

摘要

Let $mathbb N_0$ be the set of non-negative integers, and let $P(n,l)$ denote the set of all weak compositions of $n$ with $l$ parts, i.e., $P(n,l)={ (x_1,x_2,dots, x_l)inmathbb N_0^l : x_1+x_2+cdots+x_l=n}$. For any element $mathbf u=(u_1,u_2,dots, u_l)in P(n,l)$, denote its $i$th-coordinate by $mathbf u(i)$, i.e., $mathbf u(i)=u_i$. A family $mathcal Asubseteq P(n,l)$ is said to be $t$-intersecting if $ert { i : mathbf u(i)=mathbf v(i)} ertgeq t$ for all $mathbf u,mathbf vin mathcal A$. A family $mathcal Asubseteq P(n,l)$ is said to be trivially $t$-intersecting if there is a $t$-set $T$ of $[l]={1,2,dots,l}$ and elements $y_sin mathbb N_0$ ($sin T$) such that $mathcal{A}= {mathbf uin P(n,l) : mathbf u(j)=y_j ext{for all} jin T}$. We prove that given any positive integers $l,t$ with $lgeq 2t+3$, there exists a constant $n_0(l,t)$ depending only on $l$ and $t$, such that for all $ngeq n_0(l,t)$, if $mathcal{A} subseteq P(n,l)$ is non-trivially $t$-intersecting, then egin{equation} ert mathcal{A} ertleq {n+l-t-1 choose l-t-1}-{n-1 choose l-t-1}+t.otag end{equation} Moreover, equality holds if and only if there is a $t$-set $T$ of $[l]$ such that egin{equation} mathcal A=igcup_{sin [l] setminus T} mathcal A_scup left{ mathbf q_i : iin T ight},otag end{equation} where egin{align} mathcal{A}_s & ={mathbf uin P(n,l) : mathbf u(j)=0 ext{for all} jin T ext{and} mathbf u(s)=0}otag end{align} and $mathbf q_iin P(n,l)$ with $mathbf q_i(j)=0$ for all $jin [l] setminus {i}$ and $mathbf q_i(i)=n$.
机译:令$ mathbb N_0 $为非负整数的集合,并让$ P(n,l)$表示$ n $的所有弱组成部分的集合,其中包括$ l $个部分,即$ P(n,l )= {(x_1,x_2, dots,x_l) in mathbb N_0 ^ l : x_1 + x_2 + cdots + x_l = n } $。对于任何元素$ mathbf u =(u_1,u_2, dots,u_l)在P(n,l)$中,用$ mathbf u(i)$表示其$ i $ th坐标,即$ mathbf u(i)= u_i $。如果$ vert {i: mathbf u(i)= mathbf v(i)} vert ,则家庭$ mathcal A subseteq P(n,l)$相交为$ t $。对于所有$ mathbf u, mathbf v in mathcal A $中的geq t $。如果存在$ [l] = {1,2,的$ t $ -set $ T $,则一个家庭$ mathal A subseteq P(n,l)$相交于$ t $。点,l } $和 mathbb N_0 $中的元素$ y_s (Ts中的$ s ),使得P(n,l)中的$ mathcal {A} = { mathbf u : mathbf u (j)= y_j text {for all} j in T } $。我们证明给定任何带有$ l geq 2t + 3 $的正整数$ l,t $,存在一个常数$ n_0(l,t)$仅取决于$ l $和$ t $,因此对于所有$ n geq n_0(l,t)$,如果$ mathcal {A} subseteq P(n,l)$不是平凡的$ t $相交,则 begin {equation} vert math {A} vert leq {n + lt-1 choose lt-1}-{n-1 cholt lt-1} + t。 notag end {equation}此外,等式仅当存在$ t时成立$ [l] $的$ -set $ T $,使得 begin {equation} mathcal A = bigcup_ {s in [l] setminus T} mathcal A_s cup left { mathbf q_i:i in T right }, notag end {equation},其中 begin {align} mathcal {A} _s&= { mathbf u in P(n,l): mathbf u(j)= 0 text {for all} j in T text {and} mathbf u(s)= 0 } notag end {align}和$ mathbf q_i in P(n,l)对于[l] setminus {i } $中的所有$ j 和$ mathbf q_i(i)= n $,其中$ mathbf q_i(j)= 0 $的$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号