...
首页> 外文期刊>BMC Plant Biology >Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean
【24h】

Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean

机译:黑茄中渗透素样蛋白的表达赋予转基因大豆抗旱性

获取原文
           

摘要

Background Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [ Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum ( Sn OLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Results Two independently transformed soybean lines expressing Sn OLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. Conclusions This is the first report showing that expression of Sn OLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.
机译:背景技术迄今为止,干旱是导致包括大豆在内的农作物减产的最重要的环境因素[Glycine max(L.)Merr。]。为了解决这个问题,需要一种编码从茄茄中分离出的渗透素样蛋白的基因。通过拟南芥拟南芥UBQ3启动子驱动的美洲种(Sn OLP)被转移到大豆基因组中。结果产生了两个独立转化的表达Sn OLP的大豆品系。分离分析表明两条线的单基因座插入。 qPCR分析表明,在两个转基因品系的基因组中均单插入了SnOLP,但在第一品系中插入了一份hpt基因拷贝,在第二品系中插入了两个拷贝。在七个被分析的世代中,转基因植物没有表现出明显的表型改变。当缺水时,转基因植物的表现要好于对照植物。叶片生理学测定表明,与非转基因植物相比,转基因大豆植物在黎明前保持较高的叶水势,较高的净CO 2 同化率,较高的气孔导度和较高的蒸腾速率。粮食生产和100粒重受供水的影响。在缺水的情况下,转基因和非转基因植物均观察到籽粒生产力和100粒重的下降。但是,对于非转基因植物而言,这种现象更为明显。此外,在缺水的情况下,转基因品系显示出比非转基因植物明显更高的100粒重。结论这是第一个报告,表明转基因大豆中Sn OLP的表达在缺水时改善了植物的生理反应和产量构成,突显了该基因在生物技术应用中的潜力。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号