首页> 外文期刊>BRAIN. Broad Research in Artificial Intelligence and Neurosciences >Lukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems
【24h】

Lukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

机译:高度复杂系统的Lukasiewicz-Moisil多值逻辑代数

获取原文
       

摘要

The fundamentals of Lukasiewicz-Moisil logic algebras and their applications to complex genetic network dynamics and highly complex systems are presented in the context of a categorical ontology theory of levels, Medical Bioinformatics and self-organizing, highly complex systems. Quantum Automata were defined in refs.[2] and [3] as generalized, probabilistic automata with quantum state spaces [1]. Their next-state functions operate through transitions between quantum states defined by the quantum equations of motions in the Schr?odinger representation, with both initial and boundary conditions in space-time. A new theorem is proven which states that the category of quantum automata and automata-homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)-Systems which are open, dynamic biosystem networks [4] with deˉned biological relations that represent physiological functions of primordial(s), single cells and the simpler organisms. A new category of quantum computers is also defined in terms of reversible quantum automata with quantum state spaces represented by topological groupoids that admit a local characterization through unique, quantum Lie algebroids. On the other hand, the category of n-Lukasiewicz algebras has a subcategory of centered n-Lukasiewicz algebras (as proven in ref. [2]) which can be employed to design and construct subcategories of quantum automata based on n-Lukasiewicz diagrams of existing VLSI. Furthermore, as shown in ref. [2] the category of centered n-Lukasiewicz algebras and the category of Boolean algebras are naturally equivalent. A `no-go' conjecture is also proposed which states that Generalized (M,R)-Systems complexity prevents their complete computability (as shown in refs. [5]-[6]) by either standard, or quantum, automata.
机译:Lukasiewicz-Moisil逻辑代数的基本原理及其在复杂的遗传网络动力学和高度复杂的系统中的应用是在层次的本体论理论,医学生物信息学和自组织高度复杂的系统的背景下提出的。量子自动机在参考文献中定义。[2]和[3]是具有量子状态空间的广义概率自动机[1]。它们的下一个状态函数通过由薛定inger表示中的运动量子方程式定义的量子状态之间的转换而起作用,同时具有时空的初始条件和边界条件。证明了一个新的定理,该定理指出量子自动机和自动机同态的范畴既有极限,也有共极限。因此,量子自动机和经典自动机(顺序机器)都是双完全的。第二个新定理确定标准自动机类别是量子自动机类别的子类别。量子自动机类别在广义(M,R)-系统类别中具有忠实的代表,广义系统(M,R)-系统是开放的,动态的生物系统网络[4],具有定义的生物学关系,它们代表原始,单个细胞和较简单生物的生理功能。还用可逆量子自动机来定义一类新的量子计算机,其具有以拓扑群状体表示的量子状态空间,该拓扑群状体通过唯一的量子李代数来表征局部特征。另一方面,n-Lukasiewicz代数的类别有一个中心n-Lukasiewicz代数的子类别(如参考文献[2]所述),可用于设计和构造基于n-Lukasiewicz图的量子自动机的子类别。现有的VLSI。此外,如参考文献所示。 [2]中心n-Lukasiewicz代数的类别和布尔代数的类别自然是等价的。还提出了“不通过”猜想,该猜想指出广义(M,R)-系统的复杂性通过标准自动机或量子自动机阻止了它们的完全可计算性(如参考文献[5]-[6]所示)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号