...
首页> 外文期刊>BMC Systems Biology >Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress
【24h】

Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress

机译:转录因子和遗传电路编排丙酮丁醇梭菌对丁醇和丁酸胁迫的复杂,多层反应

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Organisms of the genus Clostridium are Gram-positive endospore formers of great importance to the carbon cycle, human normo- and pathophysiology, but also in biofuel and biorefinery applications. Exposure of Clostridium organisms to chemical and in particular toxic metabolite stress is ubiquitous in both natural (such as in the human microbiome) and engineered environments, engaging both the general stress response as well as specialized programs. Yet, despite its fundamental and applied significance, it remains largely unexplored at the systems level. Results We generated a total of 96 individual sets of microarray data examining the transcriptional changes in C. acetobutylicum, a model Clostridium organism, in response to three levels of chemical stress from the native metabolites, butanol and butyrate. We identified 164 significantly differentially expressed transcriptional regulators and detailed the cellular programs associated with general and stressor-specific responses, many previously unexplored. Pattern-based, comparative genomic analyses enabled us, for the first time, to construct a detailed picture of the genetic circuitry underlying the stress response. Notably, a list of the regulons and DNA binding motifs of the stress-related transcription factors were identified: two heat-shock response regulators, HrcA and CtsR; the SOS response regulator LexA; the redox sensor Rex; and the peroxide sensor PerR. Moreover, several transcriptional regulators controlling stress-responsive amino acid and purine metabolism and their regulons were also identified, including ArgR (arginine biosynthesis and catabolism regulator), HisR (histidine biosynthesis regulator), CymR (cysteine metabolism repressor) and PurR (purine metabolism repressor). Conclusions Using an exceptionally large set of temporal transcriptional data and regulon analyses, we successfully built a STRING-based stress response network model integrating important players for the general and specialized metabolite stress response in C. acetobutylicum. Since the majority of the transcription factors and their target genes are highly conserved in other organisms of the Clostridium genus, this network would be largely applicable to other Clostridium organisms. The network informs the molecular basis of Clostridium responses to toxic metabolites in natural ecosystems and the microbiome, and will facilitate the construction of genome-scale models with added regulatory-network dimensions to guide the development of tolerant strains.
机译:梭状芽胞杆菌属的背景生物是革兰氏阳性内生孢子形成物,其对碳循环,人类正常和病理生理学以及生物燃料和生物炼制应用中非常重要。在自然(例如人类微生物组)和工程环境中,梭状芽孢杆菌生物暴露于化学尤其是有毒代谢产物的压力下是普遍存在的,涉及一般的压力反应以及专门的程序。然而,尽管它具有根本和应用上的意义,但在系统级别上仍基本上未得到开发。结果我们生成了总共96组微阵列数据,以检查丙酮酸梭状芽孢杆菌(一种梭状芽孢杆菌生物)对天然代谢产物丁醇和丁酸盐的三种化学胁迫的响应。我们确定了164个差异显着表达的转录调节因子,并详细介绍了与一般反应和应激物特异性反应相关的细胞程序,其中许多以前尚未探索。基于模式的比较基因组分析使我们第一次能够构建应激反应背后的遗传电路的详细图像。值得注意的是,鉴定了与压力相关的转录因子的调节子和DNA结合基序的列表:两个热休克反应调节剂HrcA和CtsR。 SOS响应调节器LexA;氧化还原传感器Rex;和过氧化物传感器PerR。此外,还确定了一些控制应激反应性氨基酸和嘌呤代谢及其调节子的转录调节因子,包括ArgR(精氨酸生物合成和分解代谢调节剂),HisR(组氨酸生物合成调节剂),CymR(半胱氨酸代谢阻遏物)和PurR(嘌呤代谢阻遏物) )。结论我们使用大量的临时转录数据和regulon分析,成功建立了一个基于STRING的应激反应网络模型,该模型整合了丙酮丁醇梭菌一般和专业代谢物应激反应的重要参与者。由于大多数转录因子及其靶基因在梭菌属的其他生物中高度保守,因此该网络将在很大程度上适用于梭菌的其他生物。该网络提供了梭状芽胞杆菌对自然生态系统和微生物组中有毒代谢产物反应的分子基础,并将有助于建立具有更多调控网络维度的基因组规模模型,以指导耐受菌株的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号