...
首页> 外文期刊>BMC Cell Biology >Data-driven multiscale modeling reveals the role of metabolic coupling for the spatio-temporal growth dynamics of yeast colonies
【24h】

Data-driven multiscale modeling reveals the role of metabolic coupling for the spatio-temporal growth dynamics of yeast colonies

机译:数据驱动的多尺度建模揭示了代谢偶联在酵母菌落时空生长动态中的作用

获取原文
           

摘要

Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding how this cell–cell and metabolic coupling lead to functionally optimized structures is still limited. Here, we present a data-driven spatial framework to computationally investigate the development of yeast colonies as such a multicellular structure in dependence on metabolic capacity. For this purpose, we first developed and parameterized a dynamic cell state and growth model for yeast based on on experimental data from homogeneous liquid media conditions. The inferred model is subsequently used in a spatially coarse-grained model for colony development to investigate the effect of metabolic coupling by calibrating spatial parameters from experimental time-course data of colony growth using state-of-the-art statistical techniques for model uncertainty and parameter estimations. The model is finally validated by independent experimental data of an alternative yeast strain with distinct metabolic characteristics and illustrates the impact of metabolic coupling for structure formation. We introduce a novel model for yeast colony formation, present a statistical methodology for model calibration in a data-driven manner, and demonstrate how the established model can be used to generate predictions across scales by validation against independent measurements of genetically distinct yeast strains.
机译:多细胞实体(如哺乳动物组织或微生物生物膜)通常表现出复杂的空间排列方式,以适应其特定功能或环境。这些结构是由细胞间信号传导以及与环境的相互作用产生的,这些相互作用使相同基因型的细胞能够分化为组织良好的多样化细胞群落。尽管它很重要,但我们对这种细胞与细胞和代谢偶联如何导致功能优化的结构的理解仍然有限。在这里,我们提出了一个数据驱动的空间框架,以计算方式研究依赖于代谢能力的酵母菌落的发展,例如多细胞结构。为此,我们首先根据均质液体培养基条件下的实验数据开发并参数化了酵母的动态细胞状态和生长模型。推断的模型随后用于菌落发育的空间粗粒度模型中,通过使用模型不确定性和模型的最新统计技术,通过校正菌落生长的实验时间过程数据中的空间参数来研究代谢耦合的作用。参数估计。该模型最终通过具有不同代谢特征的替代酵母菌株的独立实验数据进行了验证,并说明了代谢偶联对结构形成的影响。我们介绍了一种用于酵母菌落形成的新型模型,提出了一种以数据驱动方式进行模型校准的统计方法,并演示了如何通过针对遗传学上不同的酵母菌株的独立测量进行验证,来建立所建立的模型如何用于跨尺度生成预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号