...
首页> 外文期刊>Biotechnology for Biofuels >Modular systems metabolic engineering enables balancing of relevant pathways for l -histidine production with Corynebacterium glutamicum
【24h】

Modular systems metabolic engineering enables balancing of relevant pathways for l -histidine production with Corynebacterium glutamicum

机译:模块化系统代谢工程可实现谷氨酸棒杆菌生产l-组氨酸的相关途径的平衡

获取原文

摘要

Abstract Background l -Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically perturbed the metabolism of Corynebacterium glutamicum to gain a holistic understanding in the metabolic limitations for l -histidine production. We, therefore, constructed C. glutamicum strains in a modularized metabolic engineering approach and analyzed them with LC/MS-QToF-based systems metabolic profiling (SMP) supported by flux balance analysis (FBA).ResultsThe engineered strains produced l -histidine, equimolar amounts of glycine, and possessed heavily decreased intracellular adenylate concentrations, despite a stable adenylate energy charge. FBA identified regeneration of ATP from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as crucial step for l -histidine production and SMP identified strong intracellular accumulation of inosine monophosphate (IMP) in the engineered strains. Energy engineering readjusted the intracellular IMP and ATP levels to wild-type niveau and reinforced the intrinsic low ATP regeneration capacity to maintain a balanced energy state of the cell. SMP further indicated limitations in the C1 supply which was overcome by expression of the glycine cleavage system from C. jeikeium . Finally, we rerouted the carbon flux towards the oxidative pentose phosphate pathway thereby further increasing product yield to 0.093?±?0.003?mol l -histidine per mol glucose.ConclusionBy applying the modularized metabolic engineering approach combined with SMP and FBA, we identified an intrinsically low ATP regeneration capacity, which prevents to maintain a balanced energy state of the cell in an l -histidine overproduction scenario and an insufficient supply of C1 units. To overcome these limitations, we provide a metabolic engineering strategy which constitutes a general approach to improve the production of ATP and/or C1 intensive products.
机译:摘要背景1-组氨酸的生物合成被嵌入到一个相互交织的代谢网络中,这使微生物过量生产这种氨基酸具有挑战性。这在文献中组氨酸生产者的几个可用实例中得到了反映。由于关于代谢相互作用的知识是有限的,我们系统地干扰了谷氨酸棒杆菌的代谢,以全面了解1-组氨酸生产的代谢限制。因此,我们以模块化的代谢工程方法构建了谷氨酸棒状杆菌菌株,并在基于通量平衡分析(FBA)的基于LC / MS-QToF的系统代谢谱分析(SMP)上对其进行了分析。量的甘氨酸,尽管腺苷酸能电荷稳定,但细胞内腺苷酸浓度却大大降低。 FBA确定了从5-氨基咪唑-4-羧酰胺核糖核苷酸(AICAR)再生ATP是产生1-组氨酸的关键步骤,SMP确定了工程菌株中肌苷单磷酸(IMP)的强烈细胞内蓄积。能源工程将细胞内的IMP和ATP水平重新调整为野生型,增强了固有的低ATP再生能力,以维持细胞平衡的能量状态。 SMP进一步表明在C1供应中的局限性可以通过表达甘蓝假单胞菌的甘氨酸裂解系统克服。最后,我们将碳通量重新导向氧化戊糖磷酸途径,从而进一步将产物收率提高至每摩尔葡萄糖0.093?±?0.003?mol l-组氨酸。结论通过将模块化代谢工程方法与SMP和FBA结合使用,我们发现了内在的低的ATP再生能力,这会在1-组氨酸生产过剩的情况下以及在C1单元供应不足的情况下阻止维持平衡的细胞能量状态。为了克服这些局限性,我们提供了一种代谢工程策略,该策略构成了改善ATP和/或C1密集型产品生产的通用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号