首页> 外文期刊>Biotechnology for Biofuels >Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation
【24h】

Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

机译:酿酒酵母乙醇发酵中甘油含量低和乙醇产量高的多个相互作用等位基因的鉴定

获取原文
获取外文期刊封面目录资料

摘要

Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P?>?hot1P107S,H274Y?≥?smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications.
机译:背景技术工业微生物的基因工程常常遭受对基本功能的不良副作用。逆向工程是在酵母发酵中改善多因素性状(如低甘油/高乙醇产量)的替代策略。以前对该特性进行合理的工程设计总是会影响基本功能,例如生长和压力承受能力。假设与正常细胞功能的相容性更高,我们已经筛选了酿酒酵母生物多样性中的特定等位基因,这些特定等位基因导致甘油含量较低/乙醇产量较高。先前的工作将ssk1E330N…K356N确定为菌株CBS6412中的致病等位基因,该菌株显示出最低的甘油/乙醇比。结果我们现已鉴定出一种独特的分离子26B,与上级亲本显示出相似的低甘油/高乙醇产量,但缺少ssk1E330N…K356N等位基因。使用来自26B回交的分离子与劣等亲本菌株,我们应用了分离子全基因组序列分析,并确定了与低甘油/高乙醇产量相关的三个次要定量特征基因座(QTL)。在这些QTL中,我们确定了甘油代谢的已知调控和结构基因smp1R110Q,P269Q,hot1P107S,H274Y和gpd1L164P的三个新等位基因为致病基因。所有这三个基因分别导致甘油/乙醇产生率显着下降,而gpd1L164P似乎被上级亲本中的其他等位基因抑制。降低三个等位基因的甘油/乙醇比的效力顺序为:gpd1L164P→> hot1P107S,H274Y≥≥smp1R110Q,P269Q。结论我们的结果表明,天然酵母菌株具有控制基本功能的基因的多个特定等位基因,这些基因显然与天然环境中的生存相容。这些新近鉴定的等位基因可以用作基因工程工具,用于对工业酵母菌株进行多种细微变化,从而最大程度地降低对其他基本功能产生负面影响的风险。基因工具在转录,调节或结构基因水平上起作用,将影响分布在多个靶标上,从​​而进一步使可能的副作用最小化。此外,这些结果表明,对复杂性状进行多基因分析是一种有前途的新途径,可用于鉴定涉及细胞功能的新型成分,包括在工业应用中重要的成分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号