...
首页> 外文期刊>Biotechnology for Biofuels >Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF)
【24h】

Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF)

机译:乙醇和厌氧条件可逆地抑制嗜热性同时糖化和发酵(tSSF)中的商业纤维素酶活性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF) with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP) and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50?g/L Avicel. Factors responsible for this inaccuracy were investigated in this study. Results Ethanol dramatically reduced cellulase activity in tSSF. At an Avicel concentration of 20?g/L, the addition of ethanol decreased conversion at 96 hours, from 75% in the absence of added ethanol down to 32% with the addition of 34?g/L initial ethanol. This decrease is much greater than expected based on hydrolysis inhibition results in the absence of a fermenting organism. The enhanced effects of ethanol were attributed to the reduced, anaerobic conditions of tSSF, which were shown to inhibit cellulase activity relative to hydrolysis under aerobic conditions. Cellulose hydrolysis in anaerobic conditions was roughly 30% slower than in the presence of air. However, this anaerobic inhibition was reversed by exposing the cellulase enzymes to air. Conclusion This work demonstrates a previously unrecognized incompatibility of enzymes secreted by an aerobic fungus with the fermentation conditions of an anaerobic bacterium and suggests that enzymes better suited to industrially relevant fermentation conditions would be valuable. The effects observed may be due to inactivation or starvation of oxygen dependent GH61 activity, and manipulation or replacement of this activity may provide an opportunity to improve biomass to fuel process efficiency.
机译:背景技术先前开发的使用Avicel的低固体嗜热性同时糖化和发酵(tSSF)的数学模型无法使用商业纤维素酶制剂(Spezyme CP)和高乙醇收率的嗜热嗜热厌氧杆菌菌株ALK2来预测高固形物的性能。在固体浓度大于50?g / L Avicel时,观察到的水解过程比预期的要慢。在这项研究中调查了造成这种误差的因素。结果乙醇大大降低了tSSF中的纤维素酶活性。在Avicel浓度为20?g / L的情况下,在96小时内添加乙醇会降低转化率,从不添加乙醇的情况下的75%降至添加34?g / L的初始乙醇时的32%。由于没有发酵生物,水解抑制作用导致的这种降低远大于预期。乙醇的增强作用归因于tSSF厌氧条件的降低,相对于在有氧条件下的水解而言,tSSF的厌氧条件显示抑制了纤维素酶的活性。厌氧条件下的纤维素水解比空气中的水解慢约30%。然而,通过将纤维素酶暴露在空气中可以逆转这种厌氧抑制作用。结论这项工作证明了好氧真菌分泌的酶与厌氧菌发酵条件的先前无法识别的不相容性,并表明更适合于工业相关发酵条件的酶将是有价值的。观察到的影响可能是由于氧气依赖性GH61活性的失活或饥饿所致,对该活性的操纵或替代可能提供改善生物质以提高燃料加工效率的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号