...
首页> 外文期刊>Bioresources and Bioprocessing >Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism
【24h】

Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism

机译:结合代谢调控机制的细胞代谢动力学模型的现状与展望

获取原文
           

摘要

It becomes more and more important to develop appropriate models for the efficient design of the cell factory for microbial biofuels and biochemical productions, since the appropriate model can predict the effect of culture environment and/or the specific pathway genes knockout on the growth characteristics. Among various modeling approaches, kinetic modeling is promising in the sense of realizing the essential feature of metabolic regulation. A brief overview is given for the current status of the kinetic modeling of the cell metabolism from the point of view of metabolic regulation focusing on Escherichia coli (but not limited to E. coli). For the proper modeling, it is important to realize the systems behavior by integrating different levels of information to understand and unravel the underlying principles of the living organisms, namely, it is important to properly understand how the environmental stimuli are detected by the cell, how those are transduced, and how the cell metabolism is regulated, and to express these into the model. In particular, it is important to incorporate the enzymatic regulations of Pyk, Pfk, and Ppc by fructose-1,6-bisphosphate (FBP), phosphoenol pyruvate (PEP), and acetyl-coenzyme A (AcCoA) to realize the flux-sensing and homeostatic behavior. The proper modeling for phosphotransferase system (PTS) and the transcriptional regulation by cAMP-Crp and Cra is also important to simulate the main metabolism in relation to catabolite regulation. The coordinated regulation between catabolic and anabolic (nitrogen source-assimilation) metabolisms may be simulated by the behavior of keto acid such as α-ketoglutarate (αKG). The metabolism under micro-aerobic conditions may be made by incorporating the global regulators such as ArcA/B and Fnr. It is quite important to develop quantitative kinetic models, which incorporate enzyme level and gene level regulations from the biological science and metabolic engineering points of view.
机译:为微生物生物燃料和生化产品的细胞工厂的高效设计开发合适的模型变得越来越重要,因为合适的模型可以预测培养环境和/或特定途径基因敲除对生长特性的影响。在各种建模方法中,就实现代谢调节的基本特征而言,动力学建模是有前途的。从侧重于大肠杆菌(但不限于大肠杆菌)的代谢调节的观点,简要概述了细胞代谢动力学模型的当前状态。为了进行正确的建模,重要的是通过集成不同级别的信息来理解和阐明生物体的基本原理,从而实现系统行为,即,正确理解细胞如何检测环境刺激,如何识别细胞至关重要。这些被转导,以及如何调节细胞代谢,并将其表达到模型中。尤其重要的是,必须通过1,6-双磷酸果糖(FBP),磷酸烯醇丙酮酸(PEP)和乙酰辅酶A(AcCoA)掺入Pyk,Pfk和Ppc的酶促调节,以实现流量感应和稳态行为。磷酸转移酶系统(PTS)的正确建模以及cAMP-Crp和Cra的转录调控对于模拟与分解代谢调控相关的主要代谢也很重要。分解代谢和合成代谢(氮源同化)代谢之间的协调调节可以通过酮酸(例如α-酮戊二酸酯(αKG))的行为来模拟。在微有氧条件下的新陈代谢可以通过加入诸如ArcA / B和Fnr等全局调节剂来进行。从生物科学和代谢工程学的角度出发,开发结合酶水平和基因水平调控的定量动力学模型非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号