首页> 外文期刊>Bioengineering >Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling
【24h】

Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling

机译:借助宏观动力学建模,在生物制剂生产中进行高级过程控制的过程分析技术

获取原文
           

摘要

Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R 2 ≥ 0.97) between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R 2 ≥ 0.92). Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R 2 ≥ 0.96) glucose concentration based on online cell concentration measurements using turbidity or Raman spectroscopy. Future approaches will use these online substrate concentration measurements with turbidity and Raman measurements, in combination with the kinetic model, in order to control the bioprocess in terms of feeding strategies, by employing an open platform communication (OPC) network—either in fed-batch or perfusion mode, integrated into a continuous operation of upstream and downstream.
机译:通过优化细胞系,培养基和工艺操作,已经提高了哺乳动物细胞培养物在重组蛋白生产中的生产率。这导致滴定度和工艺稳定性得到增强,而没有增加上游加工(USP)的成本;但是,仍然存在下游瓶颈。在过程控制改进方面,由美国食品和药物管理局(FDA)发起的过程分析技术(PAT)计划旨在测量,分析,监视并最终控制生物过程的所有重要属性。特别地,诸如拉曼光谱法或近红外光谱法的光谱方法使人们能够满足这些分析要求,优选地为原位。结合化学计量学技术,例如偏最小二乘(PLS)或主成分分析(PCA),可以生成软传感器,该软传感器基于过程和测量模型来估计过程变量,以增强对生物过程的控制。宏观动力学模型可用于模拟细胞代谢。这些模型能够通过预测培养过程中的细胞动态来增强对过程的了解。在本文中,将原位浊度(透射比,880 nm)和原位拉曼光谱(785 nm)测量与离线宏观Monod动力学模型结合起来,以预测底物浓度。中国仓鼠卵巢在生物反应器中培养的实验数据表明,浊度和总细胞浓度之间具有足够的线性相关性(R 2≥0.97)。拉曼光谱的PLS回归生成预测模型,该模型已通过离线可行细胞浓度测量(RMSE≤13.82,R 2≥0.92)进行了验证。基于这些测量,宏观Monod模型可用于确定不同的过程属性,例如葡萄糖浓度。因此,可以基于使用浊度或拉曼光谱法进行的在线细胞浓度测量,近似计算(R 2≥0.96)葡萄糖浓度。未来的方法将结合浊度和拉曼测量,以及动力学模型,使用这些在线底物浓度测量值,以通过采用开放式平台通信(OPC)网络(以补料分批方式)来根据进料策略控制生物过程。或灌注模式,集成到上游和下游的连续操作中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号