首页> 外文期刊>Designs, Codes and Cryptography >On weight distributions of perfect colorings and completely regular codes
【24h】

On weight distributions of perfect colorings and completely regular codes

机译:关于完美着色和完全规则代码的重量分布

获取原文
获取原文并翻译 | 示例

摘要

A vertex coloring of a graph is called “perfect” if for any two colors a and b, the number of the color-b neighbors of a color-a vertex x does not depend on the choice of x, that is, depends only on a and b (the corresponding partition of the vertex set is known as “equitable”). A set of vertices is called “completely regular” if the coloring according to the distance from this set is perfect. By the “weight distribution” of some coloring with respect to some set we mean the information about the number of vertices of every color at every distance from the set. We study the weight distribution of a perfect coloring (equitable partition) of a graph with respect to a completely regular set (in particular, with respect to a vertex if the graph is distance-regular). We show how to compute this distribution by the knowledge of the color composition over the set. For some partial cases of completely regular sets, we derive explicit formulas of weight distributions. Since any (other) completely regular set itself generates a perfect coloring, this gives universal formulas for calculating the weight distribution of any completely regular set from its parameters. In the case of Hamming graphs, we prove a very simple formula for the weight enumerator of an arbitrary perfect coloring.
机译:如果对任意一种颜色a和b,颜色a的颜色b邻居的数量不取决于x的选择(即仅取决于x),则图的顶点着色被称为“完美”。 a和b(顶点集的相应分区称为“相等”)。如果根据距该顶点的距离的着色是完美的,则一组顶点称为“完全规则”。通过某种颜色相对于某个集合的“权重分布”,我们的意思是关于距集合每个距离的每种颜色的顶点数量的信息。我们研究图相对于完全规则集(尤其是图的距离规则)相对于顶点的理想着色(相等分区)的权重分布。我们将展示如何通过了解集合中颜色组成的知识来计算此分布。对于某些完全规则集的部分情况,我们导出权重分布的显式公式。由于任何(其他)完全规则集本身都会产生完美的着色,因此这给出了用于根据其参数计算任何完全规则集的权重分布的通用公式。对于汉明图,我们证明了任意完美着色的权重枚举器的非常简单的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号